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Introduction

Sinusoids are often considered to be the fundaméntiling blocks of audio signals as well as mantler types.
Indeed classical (Helmholtz) theory of the ‘serwatdf tones’ held that sound quality (or timbre)swantirely
determined by the relative levels of summed sirdssof different frequenciésResearch carried out in the 125 years
since this work has expanded this definition ofttiento include temporal variation (envelopes) atfetiosound types
such as transients and noise-like components. ithpaccording to Fourier theory, any signal cardéscribed as a
sum of weighted stationary sinusoids it is oftesidble to employ a sound model that is more effitiand intuitive.
Such a model might very well still seek to identifiyd describe ‘stable’ sinusoidal components ffi@se that exist for

a relatively long period of time and whose paramseteay or may not vary relatively slowly over tipatiod of time) in
addition to other types of components such agdittenoise.

This tutorial review outlines some common approadoeidentifying such sinusoidal components witthie spectrum
of an audio signal and presents methods for extigache parameters, such as frequency, for theswanents. The
intention is to offer a starting point in this arehaudio analysis which is accessible to both reme&rs to time-
frequency analysis and those already experienceatisnfield. Included in the list of referencestedi to credit the
originators and developers of the techniques Iudiscare some useful sources for further informa#ibout basic
concepts discussed and time and frequency domagegsing of digital signals in general.

What does a sinusoid look like?

The termsinusoid is used to describeasine or sine function of arbitrary phase offset (starting pasfibscillation).
Two time domain plots are shown beloxwélues are on the horizontal axis, values artherhorizontal axisy values
on the vertical). In general for a sinusoidal fupctat time (t) the signal y(t) is defined by(t) = sin(at + @)

where wis the radian frequency angis the phase offset (in radiards)
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Figure 1: Sine functiony =sin(7x) or y = Cog(m(+3_ﬂ] Figure 2: Cosine functiony = cos¢rx)or y = sin(ﬂx+7—Tj
2 2

When we perform Fourier analysis with the DFT (di$e Fourier transform) we obtain a frequency repméation of
our sampled time domain signal in terms of a sesfasomplex numbers. Each complex number represedifferent
frequency region in the spectrum. The real partaxfh complex number represents the cosine pafteo$ignal at a
particular frequency and the imaginary part repressthe sine part of the signal at the same fregudror figure 1 the
real part is O (there is no cosine part) and fouré 2 the imaginary part is O (there is no sing)p¥/here the phase
offset is not a multiple offthen the complex number will have both a real amdginary part. The relationship
between real and imaginary parts and the phasenagditude of complex numbers is shown in the fidhetw.
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Figure 3: derivation of phase and magnitude from real arabimary components
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For a sinusoidal function the ideal magnitude respamagnitude plotted against frequency) shoutetapas a single
spectral line at the frequency of the sinusoid lesa in the figure below. However thmasis functions (the signal

components which our signal is decomposed intdh@fDFT are sinusoids of infinite duration as wa sae from the
time domain plot on the right.
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Figure 4: the magnitude response of a sinusoid of infiniteatlon and its time domain plot

Even if we assume that the components of an audimalsare stationary (i.e. the parameters of itmygonents,
amplitude and frequency, do not change) throughswturation and we take a single DFT of that sigwa will rarely
obtain a magnitude response for a single sinusicédtihe one in the above figure; only if we usesetangular window
whose length is aexactinteger mulitple of the pitch period will we getsingle non-zero point in the magnitude
response. Even if we could obtain such a respatagpnary audio signals convey very little infotina so we are
usually concerned with analysis of non-stationamg— the parameters will vary over time as a tedfuthanging
pitch, timbre, and dynamics as well as vibratomwk and so on. In order to track these changedbkecsignal that
happen over time we need to divide our signal small sections (frames) and perform a DFT on eaeh @e need
short frames to properly track changes in time,thatshorter our frames (and hence our DFT lengttes)the further
away from the ideal length (infinite) they are awdthe magnitude response of our sinusoid becomes smeared in
frequency. When we divide a signal into shortemiea and perform analysis by DFT on each frameptosess is
known as the short-time Fourier transform (STFT).

In order to smooth our frames so that they appeéade from and back to infinity we usually applyapered window
to each frame and overlap these frames so thaivirall level of our signal does not undulate auwae. Even if we do
not apply a smoothing window, the process of divgdihe signal up into frames produces rectanguiadews of the
signal (this is usually undesirable since a reatéargwindow produces worse smearing in the frequetmmain than a
window with a smoother shape). The figure belowvagh@ single frame of a signal after a Hann wind@s been
applied. The tapered result is the closest we eatogan infinitely long, stationary sinusoid.
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Figure5: Multiplying one frame of a sinusoidal signal bytHann window
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The modulation property of the DFT holds that npli¢iation in the time domain (as for our windowimgeration in the
figure 5) is equivalent to convolution in the fremey domaif So the representation (magnitude response) of the
tapered sine wave in figure 5 will be the magnituelsponse of the infinitely long sinusoid in figuteonvolved with
that of the Hann window (shown belofy)
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Figure 6: Magnitude response of the Hann window (0dB = peakesponse, centre of bin 0)

The magnitude spectrum of this convolution for leHE sine wave analysed with a 1024 window and #im8s zero-
padded DFT is shown below. The response is sligbglgided because 1 kHz does not coincide witteitaet centre of
an analysis bin and so the result of the convahusmot symmetrical around the frequency of tineisbid.
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Figure 7: Magnitude response of the Hann window convolvetth @il kHz sinusoid

So, provided we know the magnitude response ofwsndowing function, we can predict what a sinusbidaction
will look like when we analyse it with that windowlearly the magnitude response is at its maximantte bin in
which the sinusoid resides so one of the mostgdttimirward ways of identifying a sinusoid is by s##ng for maxima
in the magnitude response, and this is commonlfithestep in sinusoidal identification. The rélat magnitudes of
surrounding bins can be used as a measure of tus& el peak in the spectrum is to that of a statyosiausoid. This
becomes more complicated for a spectrum contaicliogely spaced sinusoids since more than one sthush exert
an influence over the same bin. When analysing p&ak common to consider those bins either sidé@ peak up to
minima either side as a spectral regiohhe MPEG Layers | and Il use a simple measuredbasiders the relative
magnitude of the peak bin and close neighbourgterthine whether a peak represents a sinusoidak iseconsidered
to be a sinusoid if the following condition is mathereX(k) and X(k+j) are magnitude components of a 512 sample
analysis frame:

X(K) - X(k+ )=7dB
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magnitude

For MPEG layer 1, j is chosen as folldws

If 2<k < 63thenj=-2 and 2.
If 63<k <127thenj=-3,-2,2and 3.
If 127< k < 25C thenj= -6, -3, -2, 2, 3 and 6.

This smearing of sinusoids in frequency due to winicig effects has other uses. The frequency shagmmgloyed in
the Shapeecross synthesis algorithm relies on the effectavisfidowing. Partials from one signal modify spekttra
regions of another signal because they have baeadpn frequency. If this were not the case thelleas partials in
both sounds coincided in very narrow frequencyaegi(the width of one analysis bin) they would betable to exert
any influence over each otfier

So far we have considered time and frequency domegiresentations of stationary sinusoids. One ®fagsumptions
of the STFT is that the signal being analysedatiagtary for the duration of each analysis framanllsignals, such as
those with vibrato or tremolo for example, havetoarously varying frequency and/or amplitude antusoids which
exhibit such behaviour have different magnitudpoases. Modulation has the effect of flatteningritegn lobe of the
analysed sinusoid. The figure below shows the nhalires for a stationary sinusoid and one whose &eqy is
increasing linearly at approximately 43 Hz and wehamplitude is falling linearly at 2 dB per franue & 1024 sample,
32 times zero padded DFT (sinusoid sampled at ##A). As well as assisting us in identifying noatginary
sinusoids, knowledge of this change in shape ofsffectral peak is important for estimating the atugé of such
signal components as we shall see shortly.
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Figure 8: Main lobe of stationary (solid line) and non-statiry (dotted line) sinusoids as a function of &liso
magnitude (scaled to peak of stationary sinusaid)ia decibels (relative to peak of stationary soid).

Given knowledge of the analysis window a ‘sinusbigameasure can be applied to a peak in the spectand its
surrounding bins. This is a measure of the coliridtetween the actual bin magnitudes surroundiegpeak and the
window function shifted to the estimated frequency:

fpeak+B

rpeak: Z+ H(f)W(f)

H(f) is the measured and normalised DFT &ud) is the shifted and normalised window functid.is the half
bandwidth over which the correlation is measurdtk(othe bandwidth of the main lobe of the windamdtion) and so
the number of points considered in the correlatim@asure depends on the degree of zero paddingirusbd DFT.
Amplitude and frequency modulation effects can beoanted for by suppressing the modulation or kimesing it

and adapting the window function ¥)&ccordingly.

Now that we have some knowledge of what sinusadk like in the frequency domain and we have disedssome
techniques for identifying them in the spectrum aofsignal we can now consider methods for estimativedr
parameters.

Estimating frequency

If we consider a 1024 point DFT of a signal samméed4.1 kHz we can calculate its frequency resgmiuby dividing

the sampling rate of the signal by the DFT sizeer&fore the size of each analysis bin, or the faqu resolution of
our analysis (the narrower the better), is appraxgtly 43 Hz. Since we are only concerned with thege of
frequencies below the Nyquist limit (half the saimglrate of our signal) we only have, in effect35nalysis bins of
information. This is because the DFT of real (eugdio) data has ‘complex conjugate symmetry’ megtiat we can
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extract all the information from half of the anadtydins plus the zeroth bin. We cannot differestibetween two
sinusoids that are closer together in frequency ##&aHz, regardless of the window we use. A 2048tdoFT of the
same signal will have double the frequency resmiutfapproximately 21.5) Hz but with a halving ofethime
resolution, since we are now analysing a framevafe the length.

In order to understand the relationship betweer tamd frequency resolution it is helpful to consittéo sinusoids one
of frequency 1000 Hz and another of frequency 182l In order to distinguish between these two siss in

frequency we need to wait until the difference yeles between them is at least one. With a diffeedn frequency of
1 Hz a one cycle difference will take 1 second ¢ous. Therefore the length of our analysis frametnfe at least 1
second (for a rectangular window) in order to mtde=distinction between the two. Any changes totaur sinusoids
intra-frame (i.e. within this single analysis frame) ik blurred together. If the difference betwees tho is 2 Hz

then we need an analysis frame of half that leifh= 0.5) in order to make the distinction. It doésnatter whether
the two frequencies are 1 Hz and 2 Hz or 10 00lahtz 10 002 Hz, we still require a 1 second analfyaise to

distinguish between them.

Given that a 1024 frame DFT of a signal sampleddal kHz is a common compromise between time aggufncy
resolution for spectral analysis of audio we neefintd a more accurate measure of sinusoidal fregguehan the centre
frequency of an analysis bin. For example a sinlisbifrequency 64 Hz will produce a peak in an gsialbin with a
centre frequency of 43 Hz. If we use this as amedé of frequency our error will be roughly aneintal of a fifth, a
significant error in musical terms! However, we cee the magnitude of the peak and that of adjdiiast or its phase
and that of adjacent frames for the same bin, fréwe our estimates for stationary sinusoids sicgmitly.

The termphase vocoder describes a system that performs an STFT on an gignal and derives magnitude and phase
values for each analysis bin in each frame. Ithis derivation of phase information in addition t@agnitude that
distinguishes it from thehannel vocoder. The use of the wordocoder (voice—coder) is anachronistic since vocoders
were first developed for speech analysis and sgighmit are now applied to many other signal tyfigs.interesting to
note that, although many applications of time-fexgy analysis such as time modification independémitch (e.g.
time stretching), require analysis and manipulatafnphase to achieve high quality resultsany high quality
modifications, such as the frequency shaping csgsthesis ofShapeecan be performed by simply retaining phase
values for one sound and ‘grafting on’ the magihétalate of anothér

If we consider a sinusoid whose frequency is etputite centre of an analysis bin we can see franfiglure below that
if we divide it into consecutive analysis framesrtlits phase offset in each frame is the same.

same phase

Figure 9: Successive analysis frames for sinusoid whose gentches centre frequency of analysis bin

Therefore for each successive analysis frame thasaned phase of the peak bin will be the same.odorDFT
parameters (described above) the peak bin forsihissoid has a centre frequency of 129 Hz andesihere is no
change in phase between successive frames, wekarihis as an accurate measure of frequency.ittgsrtant to
remember here that we are not considering ovemgpfiames in this example. Although, as discussadiee
overlapping frames are desirable for windowed digt@ prevent amplitude modulation of the signalaading to the
shape of the window function, this example is neiraightforward if we consider the non-overlappiage.

If we now consider a sinusoid whose frequency falieve the centre frequency of this bin (not gait¢he halfway
point between the centre frequency of this bin thedone above it) then we can see that the phdset dfetween
successive frames is not the same. In this casgsei¢he phase difference between frames to cadctilatdeviation in
frequency of the sinusoid from the centre frequeoitthe bin. The centre frequency is calculatedruftiplying the
bin number by the width (in Hz) of the bin (the gdenrate of the signal divided by the frame length)
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Different phase

Figure 10: Successive analysis frames for sinusoid whose ghenatches centre frequency of analysis bin

We have no way of discriminating between multipdé <277 (since 27rrepresents a complete rotation around the origin
in figure 3) but for the peak bin this is enough,aaphase difference afzrrepresents the range of frequency deviation
for the whole of a single bin (half a bin width aoand half a bin width below the centre of the)bih simple
expression of the calculation of frequency basethtar-frame phase differences is:

f — B(ni %iﬁerence)

27T

sinusoid

WhereB is the bin width (in Hz or radians according t@ference)n is the bin number an@sierenceiS the phase

difference between two successive frames. Withramé overlapping in our analysis we can obtain laevin the
correct range for the peak bin but for the two eeljd bins the deviation value could be in the ramfgel.5B and this
range increases as we move away from the peak. &iations could lead to phase offsets in the easfgt3;7which

will lead to incorrect deviation measurements @zample frequency offsets of 851.0B and 1.B will each give a
phase offset ofir). Such incorrect deviation measurements will leadlias frequencies appearing in our analysis. If
we overlap by a factor of 4 then frequency deviaiof 0.3, 1.0B and 1.8 will give phase offsets of7/4, 77/2 and

37/ 4(since the phase only has a quarter of the timen¢cement) which are unambiguous. As well as being

requirement to prevent the overall signal levelwating with the window shape, overlapping windoover -sample
the spectrum and so offer control over aliasingpdi®on around sinusoidal peaks.

Hop size =N Hop size = N/4
A ‘. ...................................................................... ’ ‘_l.>
1 x overlap 4 x overlap

Figure 11: different overlaps

The greater the overlap employed in the time dopthm greater the range of bins either side ohassiidal peak that
give a correct estimate of the frequency of thatisdid. The table overleaf shows estimates forptek bin and its
eight closest neighbours for a stationary sinusditl kHz with for overlaps of 1x and 4x.
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1 x overlap 4 x overlap
bin magnitude frequency estimate magnitude | frequency estimate
peak - 4 0.4 827.7 0.4 827.7
peak — 3 0.9 870.8 0.9 827.7
peak — 2 3.0 913.9 3.0 827.7
peak — 1 43.7 956.9 43.7 1000.0
peak 123.9 1000.0 123.9 1000.0
peak + 1 85.0 1043.1 85.0 1000.0
peak + 2 6.8 1086.1 6.8 1000.0
peak + 3 14 1129.2 14 1172.3
peak + 4 0.5 1172.3 0.5 1172.3

Table 1: frequency estimates close to peak for differentlaps (figures given to 1 decimal point)

A code listing in C is given which demonstrates hoeguency can be estimated from phase differéficghis code
was used to produce the figures in table 1.

void FrequencyEstimation(int ComplexSize, double *p

{

double phasediff, deviation;
double hop = 1/overlap;
int piSigner;

/I complexSize is the size of the array of magnitu
/I produced by the DFT operation. The size is (N/2

/I phase is the calculated phase for the current f
I/l lastPhase is the calculated phase for the previ

for (bin = 0; bin < ComplexSize; bin++) {
/Iphase unwrapping
phasediff = phasel[bin] - lastPhase[bin]; /Iphase

phasediff -= (double)bin * doublePi * hop; //subt

/I map the phase shift into the region +/- pi
piSigner = phasediff/pi;

if (piSigner >= 0) piSigner += piSigner & 1;

else piSigner -= piSigner & 1;

phasediff -= pi * (double)piSigner;

/I calculation deviation in fractions of a bin, a
/I multiply by the bin width (in Hz) to get the fre
deviation = (overlap * phasediff)/doublePi;
frequency[bin] = ((double)bin + deviation) * binw

hase, double *lastPhase, double *frequency)

des calculated from the complex array
) + 1, where N is the DFT size.

rame
ous frame

difference
ract expected phase difference

dd to the bin number and
quency estimate in Hz

idth;

Two approaches to estimating the frequency of sidlgsusing magnitude data are those of parabolictaangular
interpolation. These rely on knowledge of the magté spectrum of the window at and around the p#akto

determine the precise location of a spectral pedWden bins. Parabolic interpolation takes advantfghe fact that
the magnitude response of most analysis windowsvex@ressed in decibels is close in shape to thatparabola.
The following equation is used to obtain a frequeastimate using this method. The figure belowsiitates this.

Music Technology Forunitime-Frequency Analysis for Audio

fsinusoid = B(n +

E |\/In—l_lvln+1 )
2 Mn—l_ZMn+Mn+1

Estimated position of

/ sinusoid

>

t

n-1 n

N+l bins ~

Figure 12: parabolic interpolation
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HereB is the bin widthn is the peak bin anil is the magnitude of a bin expressed in dB. Usimgexample DFT
(1024 frames, 44.1 kHz, Hann window) to analyse kH% sinusoid we obtain an estimate of 1000.6 kHih wthis

method. The accuracy can be improved by zero-pgdtien DFT and by using a specially designed winddwse time
domain function is the inverse transform of a fiottwhose main lobe shape is as close as possibikat of a
parabola (however this may adversely affect otspeets of window performance, such as the magnifidale lobes
which we wish to keep as low as possible).

The triangle algorithm is named after the shapé¢hefmain lobe of the window function in the freqogrdomain,
although this is when the window is plotted withelar rather than logarithmic (dB) magnitude. Afiepeak has been
identified, two straight lines are drawn througk tiin magnitudes and the frequency estimate ismtakethe point at
which these two lines (which form the two opposisigpes of the triangle) intersect. The slope of lihes is
determined by calculating the best fit with thestesquared errdt.

Another method which uses DFT magnitudes is thévaléve algorithn>. However this requires the computation of
two DFTs for frequency estimation — one DFT ishwf sampled signal (as for the other methods disduss far), the
second is of the derivative of the signal. Form@ad signal the closest approximation to the @ere of the signal is:

yin = FR(Xd - k)

wherex[n]is the sampled signal angin] is the approximation of the derivative. This féeetively a high pass filtering
operation whose frequency dependent gain can lbelatdd. Therefore the difference in derivativegfhpass filtered)
and standard (non high pass filtered) DFT magnguckn be used to produce an esitmate of the freguehthe
sinusoid. The gain of the filt€s is given by:

dM o
G= peak _ ZFS sin 2ZTI:smusmd
M peak Fs

therefore, if we know the gain from taking thdoaif the two DFTs then:

F,arcsi G
¢ _ 2F,

sinusoid —
T

The following C code extract gives an example immatation of this method.

void FrequencyEstimation(double *mag, double *Dmag, double *frequency)
{
/[frequency estimation using derivative method
double SROverPi = SampleRate/pi;
double RecipDoubleSR = 1/(2 * SampleRate);
for (int bin = 0; bin < ComplexSize; bin++) {
if(mag[bin] == 0.0) mag[bin] = FLT_MIN; /Ito avo id divide by 0, needs
[Ifloat.h
frequency[bin] = Dmag[bin}/mag[bin];
frequency[bin] *= RecipDoubleSR;
frequency[bin] = asin(frequency [bin]);
frequency[bin] *= SROverPi;

This method takes account of phase (even thouglpliase from both DFTs is not used) since the diffee data
actually forms an overlapping frame with the or@idata:

Data set for single frame of DFX[0]................. X[n-1]

Next framex[n].............. X[2n-1]

Data set for single frame of difference DFT is aited fromx[-1]......... X[n-1]
Next framex[n-1]............ X[2n-1]

In fact, considering the time-shifting propertytb& DFT, then this method is equivalent to the ptdiference method
discussed earlier in this article with a hop sitistance between successive analysis frames) ot dfeevenly sample
the spectrum with a hop size of 1 the overlap wdddl024 x with our example STFT. If we employ tegivative
method with a lower overlap we are not sampling $gpectrum evenly since the frequency estimate iasored
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between two sample periods (as the first-orderedifice is used). For the phase difference methodreguency
estimate is averaged over the hop distance fronframee to the next giving a frequency estimate mesaacross the
whole length of an analysis hop.

One final method for estimation is that of frequeneassignment The general method of reassignment, as well as
estimating frequency deviations from the centramdlysis bins, can also be applied to the positicime of spectral
data. Time reassignment provides estimates of tlengfrom the centre of analysis frames. Reass@ntrfrees the
time-frequency representation from the grid strreeimposed by the frame length and the hop sizteSTFT. Once

an analysis window has been chosen, two furthedovirs are calculated — one that is ramped in thguérecy domain
(for frequency reassignment) and one that is rampedime (for time reassignment). The frequency domwindow

can be calculated in the time domain by calculathrgfirst order difference of the original windgas we do for the
actual signal with the derivative method discugseviously). Three example windows for reassignnaeatillustrated

in the figure below.

124

0.8 -
0.6
0.4 -

0.2

0.004

0.003 ~

0.002 ~

0.001 ~

-0.001

-0.002

-0.003 -

-0.004 -

150

100

50

-50

-100

-150 -

Figure 13: example windows for reassignment: Hann (top), fezmy ramped Hann (middle) and time ramped Hanrdgbot

The estimate of frequency deviation (in Hz) frora tientre of an analysis bin is given by:

_ BD DFTfrequency ramped windo
DFT.

standard window
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whereB is, as usual, the bin width in Hz abé T represents the complex value obtained for thablithe DFT. The
estimate of time deviation (in seconds) from thetieeof an analysis frame is given by:

_iD DFTtime ramped window
Fs DFTstandard window

whereF; is the sampling rate of the signal. Time reassigrnnesan be used for sharpening of transients inssiidal
analysis which reduces the ‘smearing’ of attackipos (a sudden change in level within a frameveraged across the
whole frame by DFT analysiS) C code for frequency reassignment is presentthvb@nlike previous code examples
window generation is also included here sincerinfban important part of the method):

void CreateWindows(double *HannWindow, double *Reas signFrequencyHannWindow, int FrameSize)
{

double angle, temp;

double multiplier = doublePi/(double)(FrameSize + 1)

/lgenerate Hannwindow

for (a=0; a <size; a++)
angle = multiplier * ((double)a + 1.0);
temp = 0.5 * cos(angle);
HannWindow[a] = 0.5 - temp;

}

[Ithis will calculate derivative of any window

/Iprovided the window is symmetric

double stepHeight = (HannWindow[0] + HannWindow([si ze-1]) * 0.5;

double* tempArray;

tempArray = new double[size + 2];

tempArray[0] = tempArray[size + 1] = 0;

for (a = 1; a <= size; a++) tempArray[a] = HannWin dowl[a-1] - stepHeight;

for (a = 0; a < size; a++) ReassignFreqWindow[a] = (tempArray[a+2] - tempArray[a]) * 0.5;
ReassignFreqgWindow[0] += stepHeight;

ReassignFreqgWindow(size-1] -= stepHeight;

}
void FrequencyEstimation(double *ComplexBuffer, dou ble *ComplexFreqgBuffer, double *Frequency, double
Binwidth)
{
/IComplexBuffer is complex output of DFT on Hann w indowed data
/IComplexFreqgBuffer is complex output of DFT on 'f requency weighted Hann' windowed data
double denominator, deviation, imgainaryNumerator, temp;
DCplx conjugate;
/lcalculate complex conjugate for complex division
conjugate.re = ComplexBuffer[bin].re;
conjugate.im = 0.0 - ComplexBuffer[bin].im;
/ldo complex division (only the imaginary part is required for frequency reassignment)
denominator = pow(ComplexBuf.re, 2) + pow(ComplexB uf.im, 2);
numerator.im = (ComplexFreqgBuffer[bin].re * Comple xBuffer[bin].im)
+ (ComplexFreqgBuffer[bin].im * ComplexBuffer[bin] .re);
/[calculate offset
deviation = imaginaryNumerator/denominator;
/lcalculate frequency offset in Hz
Frequency[bin = ((double)bin - deviation) * BinWid th;
}

For more information on the performance for différsignal types of each of the five frequency eation techniques
presented here the reader is directed to publigloekl on this subject*® ¢

Correcting amplitude

We have seen how the window shape affects the magnof the measured DFT spectrum and how this iatm
varies with distance from the centre of an analpgis(see figure 6 for example). This means thagplande estimates
for the underlying sinusoidal function will be irmcect unless the frequency of the sinusoid is atdéntre of the bin
from which the magnitude is measured. We can usavladge of the window shape in the frequency doraait the
deviation from the bin centre to correct this eribiis straight forward to extend the paraboliteipolation discussed
earlier to estimate the position of the paraboéialpon the magnitude as well as the frequencylgxibe equation

E (Ml_M3)2
8 (M, -2M,+M,)

AMRue0ia = M, =
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This gives the amplitude of the sinusoid in dB.

Rather than taking the main lobe shape as beingrabpla when its magnitude response is expressdé iwe can

calculate the power spectrum of the window (eitiweidirect evaluation or by storing the magnitudefioients of a

zero-padded DFT in a look-up talfle The magnitude spectrum of the Hann window caudibectly evaluated and C
code for amplitude correction using this methogrissented below along with the equation for the mitade response
(d is the offset, in bins, from the main lobe péakiNote that for this method we are concerned with magnitude
itself and not a logarithmic function of it.

double AmplitudeCorrection(double Frequency, double Mag, double BinWidth
{

double Deviation, DeviationSquared, Scaler;

/IFrequency is frequency estimate
/IMag is peak bin magnitude
//BinWidth is width of analysis bin in Hz

/lcalculate deviation from centre of bin
Deviation = Frequency/BinWidth;

Deviation = Deviation - (int)Deviation;

if (Deviance > 0.5) Deviation = 1 - Deviation;

DeviationSquared = Deviation * Deviation;

if(Deviation == 0.0) Scaler = 1.0; //Ino need to ad just estimate

else {
Scaler = (sin(pi * Deviance))/((doublePi * Devian ce) * (1 - DeviationSquared));
Scaler *= 2.0;

return Mag/Scaler;

sin(md)

WHann( d) = m

,dz1

It should be remembered that the above evaluatfothe® magnitude response will not hold for a naatiehary
sinusoid. The next section describes how we carsaneaon-stationarities in sinusoids.

Estimating amplitude and frequency modulation

The effect on mainlobe shape of frequency and duddi modulation was discussed earlier in this mevid/e can
estimate changes in amplitude and frequency paeamef a sinusoid by calculating the differenceshiem across
successive frames. However, for real time systemdsta assist us in tracking individual sinusoidsnirone frame to
another it is desirable to have some knowledgeadftame, of changes in sinusoidal parameters. fif@ikes partial
tracking more robust and allows us to consider stationary sinusoids when we are looking at thepshef the
magnitude spectrum around a peak to determineifittderlying signal component is actually a sintiswinot and/or
to correct the amplitude estimate. If we take a D&fTan entire digital signal we have a frequencymdm
representation of that signal yet we have no tiniirigrmation for the spectral components withinttrepresentation.
However, if we take the inverse DFT of this data $signal is reconstructed perfectly so time infdrarais not lost in
the DFT, rather it is encoded in the phase relatigps between analysis bins. For a stationary siduthe phase
across bins around the peak is constant providedzéiro-phase windowing is used. Empirical stutege shown that
for linear frequency and exponential amplitude mation there is a phase shift across these binstefre amplitude
and frequency modulations can be estimated providedFT is sufficiently zero-padded (8x in thesaedies)®. My
own research is currently looking at new ways ¢ineeting amplitude and frequency modulation using teassigned
STFT.

Once such modulations have been estimated thebeamcorporated into our sinusoidal model, imprgvéinusoidal
identification and estimation as well as partiatking across frame boundaries.

Conclusion

This review has covered the main considerationgwdsing the STFT to identify and obtain paramestingtions for
sinusoidal functions. Models that require sinusbieietraction cover a wide of audio processing amtions® 2
Clearly this is a large area within current reskaftaudio analysis and modelling techniques sgwsh descriptions of
sound are often easier to engage with than therathstract parameters of the DFT. What has beszsepted here is
only a fraction of knowledge and techniques in flakl but hopefully it is a useful starting point.
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