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Introduction 
Sinusoids are often considered to be the fundamental building blocks of audio signals as well as many other types. 
Indeed classical (Helmholtz) theory of the ‘sensation of tones’ held that sound quality (or timbre) was entirely 
determined by the relative levels of summed sinusoids of different frequencies1. Research carried out in the 125 years 
since this work has expanded this definition of timbre to include temporal variation (envelopes) and other sound types 
such as transients and noise-like components. Although, according to Fourier theory, any signal can be described as a 
sum of weighted stationary sinusoids it is often desirable to employ a sound model that is more efficient and intuitive. 
Such a model might very well still seek to identify and describe ‘stable’ sinusoidal components (i.e. those that exist for 
a relatively long period of time and whose parameters may or may not vary relatively slowly over that period of time) in 
addition to other types of components such as filtered noise. 
 
This tutorial review outlines some common approaches to identifying such sinusoidal components within the spectrum 
of an audio signal and presents methods for extracting the parameters, such as frequency, for these components. The 
intention is to offer a starting point in this area of audio analysis which is accessible to both newcomers to time-
frequency analysis and those already experienced in this field. Included in the list of references, cited to credit the 
originators and developers of the techniques I discuss, are some useful sources for further information about basic 
concepts discussed and time and frequency domain processing of digital signals in general. 
 
What does a sinusoid look like? 
The term sinusoid is used to describe a cosine or sine function of arbitrary phase offset (starting point of oscillation). 
Two time domain plots are shown below (x values are on the horizontal axis,  values are on the horizontal axis, y values 
on the vertical). In general for a sinusoidal function at time (t) the signal y(t) is defined by: ( ) sin( )y t tω φ= +   

where ω is the radian frequency and  φ is the phase offset (in radians) 2. 
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When we perform Fourier analysis with the DFT (discrete Fourier transform) we obtain a frequency representation of 
our sampled time domain signal in terms of a series of complex numbers. Each complex number represents a different 
frequency region in the spectrum. The real part of each complex number represents the cosine part of the signal at a 
particular frequency and the imaginary part represents the sine part of the signal at the same frequency. For figure 1 the 
real part is 0 (there is no cosine part) and for figure 2 the imaginary part is 0 (there is no sine part). Where the phase 
offset is not a multiple ofπ then the complex number will have both a real and imaginary part. The relationship 
between real and imaginary parts and the phase and magnitude of complex numbers is shown in the figure below. 
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Figure 3: derivation of phase and magnitude from real and imaginary components 
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For a sinusoidal function the ideal magnitude response (magnitude plotted against frequency) should appear as a single 
spectral line at the frequency of the sinusoid as shown in the figure below. However the basis functions (the signal 
components which our signal is decomposed into) of the DFT are sinusoids of infinite duration as we can see from the 
time domain plot on the right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Even if we assume that the components of an audio signal are stationary (i.e. the parameters of its components, 
amplitude and frequency, do not change) throughout its duration and we take a single DFT of that signal, we will rarely 
obtain a magnitude response for a single sinusoid like the one in the above figure; only if we use a rectangular window 
whose length is an exact integer mulitple of the pitch period will we get a single non-zero point in the magnitude 
response. Even if we could obtain such a response, stationary audio signals convey very little information so we are 
usually concerned with analysis of non-stationary ones – the parameters will vary over time as a result of changing 
pitch, timbre, and dynamics as well as vibrato, tremolo and so on. In order to track these changes to the signal that 
happen over time we need to divide our signal into small sections (frames) and perform a DFT on each one. We need 
short frames to properly track changes in time, but the shorter our frames (and hence our DFT lengths) are, the further 
away from the ideal length (infinite) they are and so the magnitude response of our sinusoid becomes more smeared in 
frequency. When we divide a signal into shorter frames and perform analysis by DFT on each frame this process is 
known as the short-time Fourier transform (STFT). 
 
In order to smooth our frames so that they appear to fade from and back to infinity we usually apply a tapered window 
to each frame and overlap these frames so that the overall level of our signal does not undulate over time. Even if we do 
not apply a smoothing window, the process of dividing the signal up into frames produces rectangular windows of the 
signal (this is usually undesirable since a rectangular window produces worse smearing in the frequency domain than a 
window with a smoother shape). The figure below shows a single frame of a signal after a Hann window has been 
applied. The tapered result is the closest we can get to an infinitely long, stationary sinusoid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: the magnitude response of a sinusoid of infinite duration and its time domain plot 
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Figure 5: Multiplying one frame of a sinusoidal signal by the Hann window 
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The modulation property of the DFT holds that multiplication in the time domain (as for our windowing operation in the 
figure 5) is equivalent to convolution in the frequency domain3. So the representation (magnitude response) of the 
tapered sine wave in figure 5 will be the magnitude response of the infinitely long sinusoid in figure 4 convolved with 
that of the Hann window (shown below) 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The magnitude spectrum of this convolution for a 1 kHz sine wave analysed with a 1024 window and an 8 times zero-
padded DFT is shown below. The response is slightly lopsided because 1 kHz does not coincide with the exact centre of 
an analysis bin and so the result of the convolution is not symmetrical around the frequency of the sinusoid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, provided we know the magnitude response of our windowing function, we can predict what a sinusoidal function 
will look like when we analyse it with that window. Clearly the magnitude response is at its maximum for the bin in 
which the sinusoid resides so one of the most straightforward ways of identifying a sinusoid is by searching for maxima 
in the magnitude response, and this is commonly the first step in sinusoidal identification. The relative magnitudes of 
surrounding bins can be used as a measure of how close a peak in the spectrum is to that of a stationary sinusoid. This 
becomes more complicated for a spectrum containing closely spaced sinusoids since more than one sinusoid will exert 
an influence over the same bin. When analysing peaks it is common to consider those bins either side of the peak up to 
minima either side as a spectral region5. The MPEG Layers I and II use a simple measure that considers the relative 
magnitude of the peak bin and close neighbours to determine whether a peak represents a sinusoid. A peak is considered 
to be a sinusoid if the following condition is met, where X(k) and X(k+j) are magnitude components of a 512 sample 
analysis frame: 
 

( ) ( ) 7X k X k j dB− + ≥  
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Figure 6: Magnitude response of the Hann window (0dB = peak of response, centre of bin 0) 

-120

-100

-80

-60

-40

-20

0

500 1000 1500

frequency (Hz)

m
ag

n
it

u
d

e 
(d

B
)

Figure 7: Magnitude response of the Hann window convolved with a 1 kHz sinusoid 
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For MPEG layer 1, j is chosen as follows6:  
   
  If 2 63k< < then j= -2 and 2. 
  If 63 127k≤ <  then j= -3, -2, 2 and 3. 
  If 127 250k≤ <  then j= -6, -3, -2, 2, 3 and 6. 
 
This smearing of sinusoids in frequency due to windowing effects has other uses. The frequency shaping employed in 
the Shapee cross synthesis algorithm relies on the effects of windowing. Partials from one signal modify spectral 
regions of another signal because they have been spread in frequency. If this were not the case then unless partials in 
both sounds coincided in very narrow frequency regions (the width of one analysis bin) they would not be able to exert 
any influence over each other7. 
 
So far we have considered time and frequency domain representations of stationary sinusoids. One of the assumptions 
of the STFT is that the signal being analysed is stationary for the duration of each analysis frame. Many signals, such as 
those with vibrato or tremolo for example, have continuously varying frequency and/or amplitude and sinusoids which 
exhibit such behaviour have different magnitude responses. Modulation has the effect of flattening the main lobe of the 
analysed sinusoid. The figure below shows the main lobes for a stationary sinusoid and one whose frequency is 
increasing linearly at approximately 43 Hz and whose amplitude is falling linearly at 2 dB per frame for a 1024 sample, 
32 times zero padded DFT (sinusoid sampled at 44.1 kHz). As well as assisting us in identifying non-stationary 
sinusoids, knowledge of this change in shape of the spectral peak is important for estimating the amplitude of such 
signal components as we shall see shortly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given knowledge of the analysis window a ‘sinusoidality’ measure can be applied to a peak in the spectrum and its 
surrounding bins. This is a measure of the correlation between the actual bin magnitudes surrounding the peak and the 
window function shifted to the estimated frequency: 
 

( ). ( )
peak

peak

f B
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f B

H f W f
+
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H(f) is the measured and normalised DFT and W(f) is the shifted and normalised window function. B is the half 
bandwidth over which the correlation is measured (often the bandwidth of the main lobe of the window function) and so 
the number of points considered in the correlation measure depends on the degree of zero padding used in the DFT. 
Amplitude and frequency modulation effects can be accounted for by suppressing the modulation or by estimating it8 
and adapting the window function W(f) accordingly6. 
 
Now that we have some knowledge of what sinusoids look like in the frequency domain and we have discussed some 
techniques for identifying them in the spectrum of a signal we can now consider methods for estimating their 
parameters. 
 
Estimating frequency 
If we consider a 1024 point DFT of a signal sampled at 44.1 kHz we can calculate its frequency resolution by dividing 
the sampling rate of the signal by the DFT size. Therefore the size of each analysis bin, or the frequency resolution of 
our analysis (the narrower the better), is approximately 43 Hz. Since we are only concerned with the range of 
frequencies below the Nyquist limit (half the sampling rate of our signal) we only have, in effect, 513 analysis bins of 
information. This is because the DFT of real (e.g. audio) data has ‘complex conjugate symmetry’ meaning that we can 
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Figure 8: Main lobe of stationary (solid line) and non-stationary (dotted line) sinusoids as a function of absolute 
magnitude (scaled to peak of stationary sinusoid) and in decibels (relative to peak of stationary sinusoid). 
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extract all the information from half of the analysis bins plus the zeroth bin. We cannot differentiate between two 
sinusoids that are closer together in frequency than 43 Hz, regardless of the window we use. A 2048 point DFT of the 
same signal will have double the frequency resolution (approximately 21.5) Hz but with a halving of the time 
resolution, since we are now analysing a frame of twice the length.  
 
In order to understand the relationship between time and frequency resolution it is helpful to consider two sinusoids one 
of frequency 1000 Hz and another of frequency 1001 Hz. In order to distinguish between these two sinusoids in 
frequency we need to wait until the difference in cycles between them is at least one. With a difference in frequency of 
1 Hz a one cycle difference will take 1 second to occur. Therefore the length of our analysis frame must be at least 1 
second (for a rectangular window) in order to make the distinction between the two. Any changes to our two sinusoids 
intra-frame (i.e. within this single analysis frame) will be blurred together. If the difference between the two is 2 Hz 
then we need an analysis frame of half that length (1/f = 0.5) in order to make the distinction. It doesn’t matter whether 
the two frequencies are 1 Hz and 2 Hz or 10 001 Hz and 10 002 Hz, we still require a 1 second analysis frame to 
distinguish between them. 
 
Given that a 1024 frame DFT of a signal sampled at 44.1 kHz is a common compromise between time and frequency 
resolution for spectral analysis of audio we need to find a more accurate measure of sinusoidal frequency than the centre 
frequency of an analysis bin. For example a sinusoid of frequency 64 Hz will produce a peak in an analysis bin with a 
centre frequency of 43 Hz. If we use this as an estimate of frequency our error will be roughly an interval of a fifth, a 
significant error in musical terms! However, we can use the magnitude of the peak and that of adjacent bins, or its phase 
and that of adjacent frames for the same bin, to improve our estimates for stationary sinusoids significantly. 
 
The term phase vocoder describes a system that performs an STFT on an input signal and derives magnitude and phase 
values for each analysis bin in each frame. It is the derivation of phase information in addition to magnitude that 
distinguishes it from the channel vocoder. The use of the word vocoder (voice–coder) is anachronistic since vocoders 
were first developed for speech analysis and synthesis but are now applied to many other signal types. It is interesting to 
note that, although many applications of time-frequency analysis such as time modification independent of pitch (e.g. 
time stretching), require analysis and manipulation of phase to achieve high quality results9 many high quality 
modifications, such as the frequency shaping cross-synthesis of Shapee can be performed by simply retaining phase 
values for one sound and ‘grafting on’ the maginitude date of another7. 
 
If we consider a sinusoid whose frequency is equal to the centre of an analysis bin we can see from the figure below that 
if we divide it into consecutive analysis frames then its phase offset in each frame is the same. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore for each successive analysis frame the measured phase of the peak bin will be the same. For our DFT 
parameters (described above) the peak bin for this sinusoid has a centre frequency of 129 Hz and, since there is no 
change in phase between successive frames, we can take this as an accurate measure of frequency. It is important to 
remember here that we are not considering overlapping frames in this example. Although, as discussed earlier 
overlapping frames are desirable for windowed signals to prevent amplitude modulation of the signal according to the 
shape of the window function, this example is more straightforward if we consider the non-overlapping case. 
 
If we now consider a sinusoid whose frequency falls above the centre frequency of this bin (not quite at the halfway 
point between the centre frequency of this bin and the one above it) then we can see that the phase offset between 
successive frames is not the same. In this case we use the phase difference between frames to calculate the deviation in 
frequency of the sinusoid from the centre frequency of the bin. The centre frequency is calculated by multiplying the 
bin number by the width (in Hz) of the bin (the sample rate of the signal divided by the frame length). 
 
 

Figure 9: Successive analysis frames for sinusoid whose period matches centre frequency of analysis bin 

same phase 
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We have no way of discriminating between multiples of 2π (since 2π represents a complete rotation around the origin 
in figure 3) but for the peak bin this is enough, as a phase difference of π± represents the range of frequency deviation 
for the whole of a single bin (half a bin width above and half a bin width below the centre of the bin). A simple 
expression of the calculation of frequency based on inter-frame phase differences is: 
 

2( )difference

sinusoidf B n
φ

π= ±  

 

Where B is the bin width (in Hz or radians according to preference), n is the bin number and difference
φ is the phase 

difference between two successive frames. With no frame overlapping in our analysis we can obtain a value in the 
correct range for the peak bin but for the two adjacent bins the deviation value could be in the range of 1.5B± and this 
range increases as we move away from the peak. Such deviations could lead to phase offsets in the range of 3π± which 
will lead to incorrect deviation measurements (for example frequency offsets of 0.5B, 1.0B and 1.5B will each give a 
phase offset of π ). Such incorrect deviation measurements will lead to alias frequencies appearing in our analysis. If 
we overlap by a factor of 4 then frequency deviations of 0.5B, 1.0B and 1.5B will give phase offsets of 4π , 2π  and 

3 4π (since the phase only has a quarter of the time to increment) which are unambiguous. As well as being a 

requirement to prevent the overall signal level undulating with the window shape, overlapping windows over-sample 
the spectrum and so offer control over aliasing distortion around sinusoidal peaks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The greater the overlap employed in the time domain, the greater the range of bins either side of a sinusoidal peak that 
give a correct estimate of the frequency of that sinusoid. The table overleaf shows estimates for the peak bin and its 
eight closest neighbours for a stationary sinusoid of 1 kHz with for overlaps of 1x and 4x. 
 
 
 
 
 

Different phase 

Figure 10: Successive analysis frames for sinusoid whose period matches centre frequency of analysis bin 

1 x overlap 4 x overlap 

Hop size = N Hop size = N/4 

Figure 11: different overlaps  
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 1 x overlap 4 x overlap 
bin magnitude frequency estimate magnitude frequency estimate 
peak - 4 0.4 827.7 0.4 827.7 
peak – 3 0.9 870.8 0.9 827.7 
peak – 2 3.0 913.9 3.0 827.7 
peak – 1 43.7 956.9 43.7 1000.0 
peak  123.9 1000.0 123.9 1000.0 
peak + 1 85.0 1043.1 85.0 1000.0 
peak + 2 6.8 1086.1 6.8 1000.0 
peak + 3 1.4 1129.2 1.4 1172.3 
peak + 4 0.5 1172.3 0.5 1172.3 

 
 
 
A code listing in C is given which demonstrates how frequency can be estimated from phase differences10. This code 
was used to produce the figures in table 1. 
 
 
void FrequencyEstimation(int ComplexSize, double *p hase, double *lastPhase, double *frequency) 
{ 

double phasediff, deviation; 
double hop = 1/overlap; 

 int piSigner; 
 
 // complexSize is the size of the array of magnitu des calculated from the complex array 
 // produced by the DFT operation. The size is (N/2 ) + 1, where N is the DFT size. 
 
 // phase is the calculated phase for the current f rame 
 // lastPhase is the calculated phase for the previ ous frame 
 
 for (bin = 0; bin < ComplexSize; bin++)  { 
  //phase unwrapping 
  phasediff = phase[bin] - lastPhase[bin]; //phase difference 
  phasediff -= (double)bin * doublePi * hop; //subt ract expected phase difference 
 
  // map the phase shift into the region +/- pi 

piSigner = phasediff/pi; 
  if (piSigner >= 0) piSigner += piSigner & 1; 
  else piSigner -= piSigner & 1; 
  phasediff -= pi * (double)piSigner; 
 
  // calculation deviation in fractions of a bin, a dd to the bin number and  

// multiply by the bin width (in Hz) to get the fre quency estimate in Hz 
deviation = (overlap * phasediff)/doublePi; 

  frequency[bin] = ((double)bin + deviation) * binw idth; 
 } 
} 
 
 

Two approaches to estimating the frequency of sinusoids using magnitude data are those of parabolic and triangular 
interpolation. These rely on knowledge of the magnitude spectrum of the window at and around the peak bin to 
determine the precise location of a spectral peak between bins. Parabolic interpolation takes advantage of the fact that 
the magnitude response of most analysis windows when expressed in decibels is close in shape to that of a parabola. 
The following equation is used to obtain a frequency estimate using this method. The figure below illustrates this. 
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1 1
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Table 1: frequency estimates close to peak for different overlaps (figures given to 1 decimal point) 

bins n -1 n  n + 1 

Estimated position of 
sinusoid 

Figure 12: parabolic interpolation 
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Here B is the bin width, n is the  peak bin and M is the magnitude of a bin expressed in dB. Using our example DFT 
(1024 frames, 44.1 kHz, Hann window) to analyse a 1 kHz sinusoid we obtain an estimate of 1000.6 kHz with this 
method. The accuracy can be improved by zero-padding the DFT and by using a specially designed window whose time 
domain function is the inverse transform of a function whose main lobe shape is as close as possible to that of a 
parabola (however this may adversely affect other aspects of window performance, such as the magnitude of side lobes 
which we wish to keep as low as possible).  
 
The triangle algorithm is named after the shape of the main lobe of the window function in the frequency domain, 
although this is when the window is plotted with linear rather than logarithmic (dB) magnitude. After a peak has been 
identified, two straight lines are drawn through the bin magnitudes and the frequency estimate is taken as the point at 
which these two lines (which form the two opposing slopes of the triangle) intersect. The slope of the lines is 
determined by calculating the best fit with the least squared error11. 
 
Another method which uses DFT magnitudes is the derivative algorithm12. However this requires the computation of 
two DFTs for frequency estimation – one DFT is of the sampled signal (as for the other methods discussed so far), the 
second is of the derivative of the signal. For a sampled signal the closest approximation to the derivative of the signal is: 
 

[ ] ( [ ] [ 1])sy n F x n x n= − −  

 
where x[n]is the sampled signal and y[n] is the approximation of the derivative. This is effectively a high pass filtering 
operation whose frequency dependent gain can be calculated. Therefore the difference in derivative (high pass filtered) 
and standard (non high pass filtered) DFT magnitudes can be used to produce an esitmate of the frequency of the 
sinusoid. The gain of the filter G is given by: 
 

    sinusoid2
2 sinpeak

s
peak s

dM f
G F

M F

π 
= =  

 
 

 
 therefore, if we know the gain from taking the ratio of the two DFTs then: 
 
  

    sinusoid

arcsin
2s
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F
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π

 
 
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The following C code extract gives an example implementation of this method. 
 
void FrequencyEstimation(double *mag, double *Dmag,  double *frequency) 
{ 
  //frequency estimation using derivative method 
  double SROverPi = SampleRate/pi; 
  double RecipDoubleSR = 1/(2 * SampleRate); 
  for (int bin = 0; bin < ComplexSize; bin++)  { 
   if(mag[bin] == 0.0) mag[bin] = FLT_MIN; //to avo id divide by 0, needs 
         //float.h 
   frequency[bin] = Dmag[bin]/mag[bin]; 
   frequency[bin] *= RecipDoubleSR; 
   frequency[bin] = asin(frequency [bin]); 
   frequency[bin] *= SROverPi; 
  } 
} 
 

 
This method takes account of phase (even though the phase from both DFTs is not used) since the difference data 
actually forms an overlapping frame with the original data: 
 
Data set for single frame of DFT: x[0]……………..x[n-1] 
Next frame: x[n]…………..x[2n–1] 
 
Data set for single frame of difference DFT is calculated from: x[-1]………x[n-1] 
Next frame: x[n-1]…………x[2n-1] 
 
In fact, considering the time-shifting property of the DFT, then this method is equivalent to the phase difference method 
discussed earlier in this article with a hop size (distance between successive analysis frames) of one13. To evenly sample 
the spectrum with a hop size of 1 the overlap would be 1024 x with our example STFT. If we employ the derivative 
method with a lower overlap we are not sampling the spectrum evenly since the frequency estimate is measured 



Music Technology Forum: Time-Frequency Analysis for Audio 15th April 2004 (revised 2008) 9 

between two sample periods (as the first-order difference is used). For the phase difference method our frequency 
estimate is averaged over the hop distance from one frame to the next giving a frequency estimate measure across the 
whole length of an analysis hop. 
 
One final method for estimation is that of frequency reassignment14. The general method of reassignment, as well as 
estimating frequency deviations from the centre of analysis bins, can also be applied to the position in time of spectral 
data. Time reassignment provides estimates of deviations from the centre of analysis frames. Reassignment frees the 
time-frequency representation from the grid structure imposed by the frame length and the hop size of the STFT. Once 
an analysis window has been chosen, two further windows are calculated – one that is ramped in the frequency domain 
(for frequency reassignment) and one that is ramped in time (for time reassignment). The frequency domain window 
can be calculated in the time domain by calculating the first order difference of the original window (as we do for the 
actual signal with the derivative method discussed previously). Three example windows for reassignment are illustrated 
in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The estimate of frequency deviation (in Hz) from the centre of an analysis bin is given by:  
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Figure 13: example windows for reassignment: Hann (top), frequency ramped Hann (middle) and time ramped Hann (bottom) 
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where B is, as usual, the bin width in Hz and DFT represents the complex value obtained for that bin by the DFT. The 
estimate of time deviation (in seconds) from the centre of an analysis frame is given by: 
 

time ramped window

standard window

1

s

DFT

F DFT

 
− ℜ 

 
 

 
where Fs is the sampling rate of the signal. Time reassignment can be used for sharpening of transients in sinusoidal 
analysis which reduces the ‘smearing’ of attack portions (a sudden change in level within a frame is averaged across the 
whole frame by DFT analysis)15. C code for frequency reassignment is presented below (unlike previous code examples 
window generation is also included here since it forms an important part of the method): 
 
void CreateWindows(double *HannWindow, double *Reas signFrequencyHannWindow, int FrameSize) 
{ 
 double angle, temp; 
 double multiplier = doublePi/(double)(FrameSize + 1) 
  

//generate Hannwindow  
for (a = 0; a < size; a++) { 

  angle = multiplier * ((double)a + 1.0); 
  temp = 0.5 * cos(angle); 
  HannWindow[a] = 0.5 - temp; 
 } 
 
 //this will calculate derivative of any window 
 //provided the window is symmetric 
 double stepHeight = (HannWindow[0] + HannWindow[si ze-1]) * 0.5; 
 double* tempArray; 
 tempArray = new double[size + 2]; 
 tempArray[0] = tempArray[size + 1] = 0; 
 for (a = 1; a <= size; a++) tempArray[a] = HannWin dow[a-1] - stepHeight; 
 for (a = 0; a < size; a++) ReassignFreqWindow[a] =  (tempArray[a+2] - tempArray[a]) * 0.5; 
 ReassignFreqWindow[0] += stepHeight; 
 ReassignFreqWindow[size-1] -= stepHeight; 
} 

 
void FrequencyEstimation(double *ComplexBuffer, dou ble *ComplexFreqBuffer, double *Frequency, double 
BinWidth) 
{ 
 //ComplexBuffer is complex output of DFT on Hann w indowed data 
 //ComplexFreqBuffer is complex output of DFT on 'f requency weighted Hann' windowed data 
 double denominator, deviation, imgainaryNumerator,  temp; 
 DCplx conjugate; 
 
 //calculate complex conjugate for complex division  
 conjugate.re = ComplexBuffer[bin].re; 
 conjugate.im = 0.0 - ComplexBuffer[bin].im; 
 
 //do complex division (only the imaginary part is required for frequency reassignment) 
 denominator = pow(ComplexBuf.re, 2) + pow(ComplexB uf.im, 2); 
 numerator.im = (ComplexFreqBuffer[bin].re * Comple xBuffer[bin].im) 
  + (ComplexFreqBuffer[bin].im * ComplexBuffer[bin] .re); 
 
 //calculate offset 
 deviation = imaginaryNumerator/denominator; 
 
 //calculate frequency offset in Hz 
 Frequency[bin = ((double)bin - deviation) * BinWid th; 
} 

 
For more information on the performance for different signal types of each of the five frequency estimation techniques 
presented here the reader is directed to published work on this subject11,13, 16. 
 
Correcting amplitude 
We have seen how the window shape affects the magnitude of the measured DFT spectrum and how this magnitude 
varies with distance from the centre of an analysis bin (see figure 6 for example). This means that amplitude estimates 
for the underlying sinusoidal function will be incorrect unless the frequency of the sinusoid is at the centre of the bin 
from which the magnitude is measured. We can use knowledge of the window shape in the frequency domain and the 
deviation from the bin centre to correct this error. It is straight forward to extend the parabolic interpolation discussed 
earlier to estimate the position of the parabolic peak on the magnitude as well as the frequency axis by the equation 
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This gives the amplitude of the sinusoid in dB.  
 
Rather than taking the main lobe shape as being a parabola when its magnitude response is expressed in dB we can 
calculate the power spectrum of the window (either by direct evaluation or by storing the magnitude coefficients of a 
zero-padded DFT in a look-up table12). The magnitude spectrum of the Hann window can be directly evaluated and C 
code for amplitude correction using this method is presented below along with the equation for the magnitude response 
(d is the offset, in bins, from the main lobe peak)17. Note that for this method we are concerned with the magnitude 
itself and not a logarithmic function of it. 
 
double AmplitudeCorrection(double Frequency, double  Mag, double BinWidth 
{ 
 double Deviation, DeviationSquared, Scaler; 
 
 //Frequency is frequency estimate 
 //Mag is peak bin magnitude 
 //BinWidth is width of analysis bin in Hz 
  
 //calculate deviation from centre of bin 
 Deviation = Frequency/BinWidth; 
 Deviation = Deviation - (int)Deviation; 
 if (Deviance > 0.5) Deviation = 1 - Deviation; 
 
 DeviationSquared = Deviation * Deviation; 
 if(Deviation == 0.0) Scaler = 1.0; //no need to ad just estimate 
 else { 
  Scaler = (sin(pi * Deviance))/((doublePi * Devian ce) * (1 - DeviationSquared)); 
  Scaler *= 2.0; 
 } 
 return Mag/Scaler; 
}  
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It should be remembered that the above evaluation of the magnitude response will not hold for a non-stationary 
sinusoid. The next section describes how we can measure non-stationarities in sinusoids. 
 
Estimating amplitude and frequency modulation 
The effect on mainlobe shape of frequency and amplitude modulation was discussed earlier in this review. We can 
estimate changes in amplitude and frequency parameters of a sinusoid by calculating the differences in them across 
successive frames. However, for real time systems and to assist us in tracking individual sinusoids from one frame to 
another it is desirable to have some knowledge, intra-frame, of changes in sinusoidal parameters. This makes partial 
tracking more robust and allows us to consider non-stationary sinusoids when we are looking at the shape of the 
magnitude spectrum around a peak to determine if the underlying signal component is actually a sinusoid or not and/or 
to correct the amplitude estimate. If we take a DFT of an entire digital signal we have a frequency domain 
representation of that signal yet we have no timing information for the spectral components within that representation. 
However, if we take the inverse DFT of this data the signal is reconstructed perfectly so time information is not lost in 
the DFT, rather it is encoded in the phase relationships between analysis bins. For a stationary sinusoid the phase  
across bins around the peak is constant provided that zero-phase windowing is used. Empirical studies have shown that 
for linear frequency and exponential amplitude modulation there is a phase shift across these bins. Therefore amplitude 
and frequency modulations can be estimated provided the DFT is sufficiently zero-padded (8x in these studies)18. My 
own research is currently looking at new ways of estimating amplitude and frequency modulation using the reassigned 
STFT. 
 
Once such modulations have been estimated they can be incorporated into our sinusoidal model, improving sinusoidal 
identification and estimation as well as partial tracking across frame boundaries. 
 
Conclusion 
This review has covered the main considerations when using the STFT to identify and obtain parameter estimations for 
sinusoidal functions. Models that require sinusoidal extraction cover a wide of audio processing applications19, 20. 
Clearly this is a large area within current research of audio analysis and modelling techniques since such descriptions of 
sound are often easier to engage with than the rather abstract parameters of the DFT. What has been presented here is 
only a fraction of knowledge and techniques in this field but hopefully it is a useful starting point. 
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