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ABSTRACT

The spectral analysis capability of the human awugisystem is crucial to its ability to
extract information from audio signals. Spectrahlgsis, processing and modelling are
concerned with the decomposition of audio signatis simpler components which can have
different positions in, and may vary over, frequeaad time. Modern spectral models which
combine sinusoids and other signal component tgffes a powerful and flexible means of
changing sounds in perceptually meaningful and stomally plausible ways. However,
whilst many of these offer real-time interactiorridg modification of, and resynthesis from,
model data, real-time analysis for such modelsrkasived relatively little attention from
researchers or designers. This thesis examinespdissibilities for real-time spectral

modelling on available hardware using a combinatibRourier and wavelet techniques.

Two specific areas of analysis are addressed|y;ishgle-frame high accuracy description
of stationary and non-stationary sinusoids by tee of time-frequency reassignment data
and the derivation of sinusoidality measures frarohsanalysis is described and compared
with an existing single frame approach. Secondlgoaplex B-spline wavelet analysis
system for audio signals is devised, which offestingation of component magnitude,

frequency and bandwidth, for use with parametrigadigers at resynthesis.

These novel methods are then combined in a frardealye “sinusoidal plus residual”
spectral analysis, modelling and resynthesis systdmns heterogeneous system performs all
of its resynthesis in the time domain on a samplesdmple basis whilst offering control
over the mean instantaneous frequency of all afdtaponents. In its current implementation
the system executes at speeds very close to neal-tivhilst not all audio signal types are
successfully modelled, the results obtained dematestthat frame-by-frame spectral

modelling, using techniques developed in this #hasipossible for a range of sounds.
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1 OVERVIEW OF THESIS

1.1 Introduction

This chapter gives a general overview of the reteand application context of this thesis. A
hypothesis is stated from which practical aims ahpkctives for the work undertaken and
reported here are described. An overview of thectire of this document, along with the

reasoning behind aspects of content and stylésasgiven.

1.2 Spectral modelling for creative sound transfor mation

Ever since the advent of technology for capturistgring and replaying acoustic signals,
either as a direct physical analogue or as sefidsorete numbers, musicians have sought to
manipulate or create sound in such forms as pacbofpositional and creative processes.
This has gone hand in hand with acoustic and psghestic research into the nature of
sound and music and human responses to it. Iniaaldd this exploration into the nature of
sound, its perception, and how both can be mouldexligh creative processes, there have
been continuous improvements in the technologied ®&thniques available for such
purposes. Music Technology, as this general fiedld hecome known, is therefore truly
multidisciplinary (some would say transdisciplinary incorporates aspects of the traditional
disciplines of music, engineering, physics, psyoggland computer science and, of course,
these disciplines themselves incorporate otherls asanathematics, biology and chemistry.
Whilst no discipline is truly isolated from all @fs, music technology is perhaps one of the

least ‘compartmentalised’.

Both physiological and psychological investigationfsthe human auditory system have
found that a key means by which we are able toaekinformation from audio signals is
through spectral analysisin other words we are able to describe a complattern of

vibration in terms of the summation of simpler pats of vibration which occur at different
spectral positions (frequencies). Therefore if infation is contained in the spectral ‘layout’
of sounds, a valid tool for communication via sousdone which offers access to this
spectral map and the individual components it dostéSpectral modelling for audio aims to
provide a meaningful description of sound in teohsonstituent components which occupy

particular positions in frequency and, commoniyi



Many analogue electronic and computer based toat &r the spectral description and
processing of sound. Many of these, such as theegpé@coder, enable acoustically plausible,
as well as fantastic, transformations of existingrgls such as the scaling of duration and
pitch independently of each other. However, thesphaocoder model of sound as
overlapping grains with magnitude and phase iswiwdlly compatible with the common
conception of sound as the combination of speeferhents which are continuous in time
and have time varying frequency, magnitude and Wwaitd. Spectral modelling systems
attempt to infer this latter conception of sounghirspectral data in order to provide a more
intuitive and flexible description which is more emable to a wide variety of perceptually

meaningful transformations.

1.3 Investigation of real-time spectral modelling for creative sound

transfor mation

1.3.1 Moaotivation for work contained in thisthesis

Whilst tools exist for modification of, and syntie$from, spectral models in real-time little
attention has been paid to tbeeation of models in real-time. In fact there seems toaahe
acknowledgement, or assumption, in the literatur¢hos subject that modelling of sound, be
it physical or spectral, is an inherently non-réale process: spectral processing may be
performed in real-time, or quasi real-time, (usihg phase or channel vocoder for example)
but deriving a model cannot. As far as spectradl@ling is concerned, and in the opinion of
the author, this is at odds with how we as humasgive, and infer meaning from, sound.
When we hear a time stretch of an audio signalchviie believe is a poor approximation to
what we would expect from an acoustic source, vebasing this expectation on how we
imagine the time stretch should actually soundria sense that ‘imagination’ is the product
of a model of the behaviour of how such a soundushbehave which we are able to

construct as we hear it.

Tools exist within recording studios for capturimgnerating, storing and processing sound.
Tools for processing in many studios, particuldrgfore the advent of computer based hard
disk recording of digital audio, process audioealttime; they have audio input and output
connections but no, or only short-term temporasgilities for storage. Where spectral

modelling is used for audio processing it must eniliy be performed ‘offline’. Whilst this

‘rendering’ paradigm may be suited to the needsarhe musicians it may well be, and
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probably is, constraining for others. A primary mation for the work contained in this

thesis is to question whether this constraint resast.

Fourier analysis has been a ubiquitous tool forsibectral analysis and processing of audio
signals with computers. Other methods such as GabdrWalsh-Hadamard analysis and
time-frequency energy distributions have been aggtiut far less often. However, since the
late 1980s a new analysis technique, that of wésjeleas emerged which offers certain
potential advantages over Fourier analysis. Asputin considerable research effort,

understanding of wavelets and their applicatiorsdrawn so has interest in them for audio
processing and modelling applications. Fourier ha®nger history and so many of its

associated techniques, and understanding of thenmare mature. Many audio systems use
either a wavelet or a Fourier approach. It is @ghor’'s contention that no one analysis
technique offers a panacea for all analysis andetlind problems and that combinations of

such techniques should be investigated.

1.3.2 Statement of hypothesis

Wavelet and Fourier analysis methods can be combiog@rovide a meaningful and
flexible parametric spectral modelling system tbah be used as a real-time audio
processor for monophonic sources. In particularhigh-accuracy modelling of their
parameters (including those of non-stationarityljusoids can be identified and
tracked from frame to frame and complex waveletsbsaused to produce a model of

the residual which is time-variant and can be sgaibed in the time domain.
This hypothesis is examined in three ways:

1. Through the development and testing of an algoritlom estimating the mean
amplitude and frequency, as well as the linearueegy change and exponential
amplitude change, that a spectral magnitude pehibiéx in a single analysis frame
and determining whether the behaviour of its patarseare consistent with that of a

stable sinusoid.

2. The adaptation of B-spline wavelets to a partiabcimated complex transform
technique and investigation of this transform’slgsia properties for different audio

signal types.



3. The combination of these two novel analysis methads frame-by-frame spectral
modelling system for monophonic audio sources &ed potential application in a

real-time system.

1.3.3 Thesisstructure

No discipline knows more than all disciplines. [@iad cited in Nowotny]

The remainder of this thesis is concerned withinkiestigation of the hypothesis given in the
previous section. In order to do this the work utadeen is first placed in the broad context
of sound, music and the application of technolagidth of these. Since music technology is
multidisciplinary a readership from a wide range lwdckgrounds and with differing
knowledge of the areas covered is anticipated.tiisrreason an extensive overview of the
motivation for computer based creative sound tanshtions is given along with an
extensive coverage of the existing literature in field. Initially a ‘wide angle’ view is taken
of the subject area followed by a more detailecdbrmoview’ of the specific areas of time-
frequency analysis and spectral modelling. Thi®ll®wed by a description and evaluation
of the novel methods investigated in order to tlst hypothesis. Finally the results and
conclusions are summarised and directions for éuvork are considered.

Chapter 2 summarises methods of describing andesepting sound and music. An
overview of the technologies employed to test tygokhesis is given and how the work and
knowledge presented in this thesis might contribatine field of digital music research. Key
scientific and technological aspects of this thesid their musical and cultural imperatives

are introduced and explained.

Chapter 3 describes methods for generating, amglysnodelling and processing digital
audio signals. It is in this chapter that the uhdeg analysis and modelling paradigms
which underpin the novel work in later chaptersexplained and mathematically described.
Spectral modelling and Fourier and wavelet analgsesthe subject of detailed study and are
also placed in a general context of audio signatgssing and modelling methods.

Chapter 4 describes novel techniques for idengfysinusoids and estimating their
parameters, stationary and non-stationary, fronssigaed Fourier analysis data. These
methods are compared to existing methods. Thiesyss intended to function as a high-

accuracy analysis system for frame-by-frame sirdaaonodelling.



Chapter 5 gives a detailed overview of a new corplavelet system which uses B-spline
wavelets as an approximation to Gabor grains twigeoa ‘constant-Q’ time-frequency
analysis of audio signals. This system aims to idewata for a model of spectral
components which can be used to control parametyi@lisers in real-time. This system
offers control over the amount of decimation tlsaperformed on data and so the trade-off

between ‘over completeness’ and computationalisastamined.

Chapter 6 puts the work of the previous two chapierthe practical context of a spectral
analysis and resynthesis system and examines #sgbpidy for real-time spectral modelling
of sound using such a system. An overview of thecéic system is given followed by
examination of its performance, both in terms & tjuality of the resynthesized output and

the computational cost of producing it.

Finally chapter 7 summarises key results and cermhs from the previous three chapters
and considers them in relation to the hypothesisedilons for future work which might
further expand on the knowledge presented in tesishand improve upon the techniques

and system described are given.

1.3.4 Contribution to knowledge in spectral analysis and modedlling

The author believes that work described within tthissis contributes to knowledge of
techniques for spectral analysis and modelling dhdir applicability to real-time

implementations. The key novel areas studied gported are:

 The possibilities for high accuracy estimation ofusoidal parameters using
reassigned short-time Fourier data and an iteratighod for reducing the influence

of intra-frame frequency and amplitude change uperestimation of each other.

* The use of ‘estimated parameter behaviour’ astaofesinusoidality on a frame-by-
frame basis and how it compares with other tesisiwtio not assume stationarity in

their sinusoidal models.

* The application of B-spline wavelets for audio sigmodelling in general and

estimation of component centre frequency, magniauakebandwidth in particular.



» The potential for a heterogeneous real-time splectagelling system which uses a
combination of Fourier and wavelet analysis and sehoutput is synthesized wholly

in the time domain.

1.4 Summary

An overview of the work investigated for this thesis well its context and motivation has
been presented in this chapter. A hypothesis, wheseng underpins all of the work

presented in the following pages has been stathd. structure of this document and an
overview of how it presents this work and the &tere describing the existing research on
which it builds has been given. The contributionskhowledge in the field of spectral

analysis and processing in general, and of rea-spectral modelling in particular, have

been summarised.



2 REPRESENTATIONS OF SOUND AND MUSIC

If this word ‘music’ is sacred and reserved forheéggnth- and nineteenth-century instruments,

we can substitute a more meaningful term: orgainisatf sound. [Cage, 1961]

2.1 Introduction

This thesis deals with applications of quasi r@aktanalysis, modification and resynthesis
of audio. The modification of audio can be seeramasattempt to organise its structure to
create some kind of meaningful perceptual effe¢hose listening to it. A common modern
definition of music is ‘organised sound’ and sohwiitis definition in mind the broad purpose
of the modification of audio using the tools delsed in this thesis is the creation of music.
Therefore this thesis is fundamentally concerneth bwith sound as a physical and
perceptual phenomenon and music as the organisébiome-organisation) of sound to
produce or contribute to “a pattern of sounds mhagemusical instruments, singing or
computers, or a combination of these, intendedite gleasure to people listening to it”

[Cambridge Advanced Learner’s Dictionary].

This chapter reviews current theories on soundnamsic as they relate to the contents of this
thesis. The first part of the chapter discussegptbduction, transmission, and manipulation
of sound itself and audio signals and data whi@h wsed to represent it. The second part
deals with issues related to the creation (writewgd performing) of music and the

manipulation of audio signals and data within el@dt and computer based systems for the

composition or performance of music.
2.2 Sound and itsrepresentation
2.2.1 Sound and sensing sound

If a tree falls in the woods and there is no-oraédhto hear it

does it make a sound? [ unattributed]

The above question (which may, or may not, be akoam) illustrates the dual nature of
sound in that it is both an acoustic and psychosttophenomenon. For the purposes of this
discussion the answer is ‘no’ since the definitadrsound used here is that of “an acoustic
event or events perceived by the human auditoriesys The acoustic event may be the

falling of a tree, the clapping of hands or the ement of a loudspeaker diaphragm. To be
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acoustic an event must produce variations in teequre of the matter surrounding the object

(usually air) which then propagate as a wave.

As these variations in pressure emanate outwams fn object the intensity of these
variations will reduce since the power generatedhigysource is spread over a greater area.
Under certain conditions sources can be consideredcupy a single point (if they are very
small for example) from which sound waves will prgpte equally in all directions. The
intensity of a sound wave for a given distancdrom a point source is the power of the
source distributed over the surface area of a spivbose radius is this distance. Therefore
the intensity! (in Watts/nf) of the sound at a distancefrom a point source of powat/ is
given by:

W

= (2.1)

This means that the intensity of sound waves prajpag in the free field varies in inverse
proportion to the square of the distance travellHte sound intensity will also be further
reduced if energy is dissipated in the medium tghowhich it travels, however this loss of

energy will almost certainly be frequency dependent

As sound propagates through the volume surrountthi@gource any objects in its path will
move in sympathy with the variations in fluid pressto a greater or lesser extent. Objects
with a low mass and a large surface area in theeptd propagation will move more than
objects with high mass and a low surface area.eBEneanal begins at the outer ear and ends
at a lightweight, thin and taut membrane whicthis ¢ar drum. This moves in sympathy with
variations in the pressure of air (or water) in ¢éae canal and these movements are passed on
via the sympathetic movement of a chain of threeelp called the ossicles, to the oval
window. It is via the oval window that the moven=nf these bones are transferred to the
fluid in the cochlea of the inner ear. As the flurdthe cochlea moves a travelling wave
motion is set up in the basilar membrane which nimdength. As the basilar membrane
moves hairs within the Organ of Corti, which sitstop of membrane, also move. It is their
movement which excites associated nerve fibres il these nerve fibres which carry
auditory information to the brain. The extent oé tmovement of the hairs determines how
many nerve fibres are excited by the stimulus anthere must be a certain level of sound

energy present to cause auditory information tgdy@ to the brain. This means that below a
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certain threshold of intensity, variations in prgssat the opening of the ear canal will not
cause sufficient stimulation of the auditory nefibees and there will be no sense of sound in
the listener [Pickles, 1988]. Since the intensitgaund diminishes as it propagates there will
be a distance between source and listener (foremgiource power) beyond which the sound
cannot be perceived. Perhaps a more precise fotheajuestion would be “if a tree falls in

the woods and there is no-one there to hear sipusid sensed?” In this thesis the distinction
is made between sound as an acoustic phenomenotharsgnse of sound via the human
auditory system as a psychoacoustic phenomenonndS@i generated by the relative

movement of object and fluid, it propagates throtigdt fluid as variations in pressure, it is
conducted via bone and fluid in the middle and ireer where it causes movement of hairs
which trigger electrical impulses in the associatedve fibres which transmit the ‘sense’ of
the sound stimulus to the central nervous systehis distinction between acoustic and

psychoacoustic sound, between how sound is prodaeéchow it is sensed is an important
one when considering different approaches to sonodelling that are discussed in the next

chapter.

2.2.2 Limitsof auditory perception

In the previous section the basic properties ofndoand the means of its perception in
humans were introduced along with a limitation l¢s tperception: an intensity threshold
below which sound cannot be perceived. Sound iittems the power (rate of flow of
energy) per unit of area and this power manifeselfias variations in air pressure. Since
sound is produced in an atmosphere which exeri@wts continuous pressure (atmospheric
pressure) sound power causes deviations from tieisspre and it is variations in the net
pressure on an object in a soundfield which cagemove. Like pressure, the amplitude of
pressure variations, is measured in NewtoAgatso known as Pascals). Since this net
pressure can vary rapidly between positive and thegaalues it is usually measured by
taking the root mean square of all (or regularijmgked) instantaneous values over a given
time interval. The intensity of a sound at a gipamt is given by the square of the deviation
from atmospheric pressure. Therefore for a soufggven power, as the distance from this

source increases so the sound pressure Rwcreases according to:

pol (22
X



The minimum pressure deviation that can be detebiedhe human auditory system is

approximately 20uPa and this level is referred to as the thresholdhedring. The upper

limits of human hearing in terms of sound presdevel (SPL) are the threshold of feeling

and threshold of pain. The threshold of feelingofen quoted in the literature as being

approximately 20 Pa which is a pressure lel@times that of the threshold of hearing.
Taking the threshold of feeling as the upper liofitomfortable listening and the threshold
of hearing as the lower limit we have a range dfsSxpressed in decibels, of 120 dB. The

decibel is defined as

10 Iog(\%} (2.3)

2

whereW, andW, are power values. Since sound power is propottianthe square of the

pressure amplitude the decibel is also defined as

20 Iog[gj (2.4)

2

Where B and P,are pressure variation amplitudes. The decibel isommon way of

representing sound pressure levels with the thtdsbiohearing being the reference (zero)
point. So the threshold of hearing is at 0 dB SRd the threshold of feeling is 120 dB SPL.
It should be noted that the threshold figure ofB0SPL, 20 /Pa, is only an approximation

of the threshold of hearing in humans and the &t¢twashold varies from person to person
and with frequency. In fact the actual thresholdheéring in healthy humans is closer to 10

MPaat frequencies where the ear is most sensitive2@602003].

One aspect of the perception of sound that the BB 18easure does not take account of is
therate at which the instantaneous pressure fluctuatestaimospheric pressure. As sound
is the variation in net pressure so the frequerfcgoand is the rate at which that variation
fluctuates between negative and positive, a siogiée being the time taken for one negative
and one positive excursion. The period of the sognthe duration of the cycle and its

frequency is the number of cycles which occur isirggle second (measured in Hz). It is

widely held that a young adult human can perceemgations in air pressure which have a

frequency of between 16 Hz and 20 kHz (providedsthend is of sufficient intensity) via the
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auditory system [Moore, 1997]. More recent reseagfgests that the physiology of the
human brain is altered when exposed to sounds vaneligher in frequency than the upper
limit of 20 kHz [Oohashi et al, 1991]. It is ceréy the case that very intense variations in

pressure below 16 Hz can be experienced as vibrhtidhe touch senses.

2.2.3 Discrimination between audio components

Meaningful variations in pressure, or any other soeable physical property of an object or
a medium, can often be broken down into combinatiohsimpler variations. Indeed, the
identification and description of such patterneng of the main areas of investigation within
this thesis. Within audio the purpose of this ‘deposition’ of sounds (or the signals that
represent them) is often to identify perceptuallgamingful elements, or groups of elements,
which can be modified to effect a perceptually niegful transformation of that sound.

Another application is the efficient storage of muds data by producing an invertible
representation of the audio which is as sparse ossilge. These two applications are
combined in entropy based lossy compression ofocasigjnals where the representation is
made sparse by the removal, or reduction in resolubf components that are considered
less perceptible than other components [Watkind®99]. Very often components that
would be quite audible if heard in temporal or sp@dsolation from each other cannot be
perceived when heard in combination with other, xpnate and more dominant,

components. To return to our original example “tiee falls in the woods yet the sound it
makes is inaudible due to the sound made by arlarge falling at the same time, does it
make a sound?”. This section provides a brief dearnof how the human auditory system is,

and is not, able to discriminate between diffeardio components.

A pattern of variation around a central point otuea(i.e. an oscillation) which has a
straightforward mathematical description and mahysgal manifestations in the world

around us is described by the sine function:
x(t) = Asin(2r ft+ @)+ X (2.5)

where x(t) is the instantaneous value of the function at atpioi time t, A is the overall
amplitude of the variatiorf, is the number of oscillations per secodjs the point during
the cycle reached at a given time instant (the pludfset) andX is the offset of the mean
value of the function from zero. When measuringpaéssure in a sound fiela, would be

the average atmospheric pressure although thismsnonly omitted in the literature . The
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cosine function, which is the sine function shifteg %radians can be described by the

following:
x(t) = Acos(27 ft+g@ )+ X = Asir( ar ft+ ﬂ2+¢)+ X (2.6)

In this thesis sine and cosine functions are ddfiae being these functions with no phase
offset ¢ whereas sine or cosine functions with a non-zéase offset are defined as being
‘sinusoidal’. Single instances of such functions aften referred to as a ‘simple tone’, or just
a ‘tone’ and this is the definition of tone whichused in this thesis. Sounds comprised of a
combination of tones are often referred to as cermpnes but use of this label is avoided in

this thesis to avoid confusion with complex numbers

The location of the region (or regions) of excaatalong the basilar membrane depends on
the spectrum of the sound causing the excitatitwe. Spectrum of a sound (or of any pattern
of vibration) can be described by the amplitude phase of individual sinusoidal vibrations
that, when combined, will produce the same pattémibration, although certain types of
sound would require an infinite number of sinusoitiserefore the basilar membrane acts as
a mechanical spectrum analyser [Pickles, 1988]ingla, time-invariant sinusoidal function
will produce the most localised region of excitation the membrane. The width of the
region of excitation is also determined by thenstty of the sound at the ear so a sinusoidal
function that is relatively low in level will prode a narrower region of excitation than a
sinusoidal function that is higher in level [Pla@&Q05]. The centre point of the excitation
depends on the frequency of the vibration. Theoregif excitation caused by a sinusoidal
vibration is known as a critical band, its widthtle critical bandwidth and its shape is the
excitation envelope. Numerous studies have atteimpte determine how the critical
bandwidth varies with centre frequency for tonethatsame level. The more recent studies
have used a measure known as the equivalent retéangandwidth (ERB) which is the
width of a rectangular filter which has the samakpkevel and which passes the same total

power for a white noise inputThis relationship is described by:

ERB=247((43% 10 f)+ }  (27)

! White noise, discussed in more detail in the nehdpter, is noise whose magnitude is independent of
frequency. 12



where the ERB and frequency (are given in Hz [Glasberg and Moore, 1990]. A bt
frequency versus ERB derived from this equaticshiswn in figure 2.1.
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Figure 2.1: Relationship between centre frequemay equivalent rectangular bandwidth (ERB) of
auditory filter.

If a sound is comprised of two sinusoids of simitaensity, which are very close together
(i.e. much less than one critical bandwidth apdrén they will be fused together by the
basilar membrane and will be perceived as a stogle. If they are close in frequency (up to
approximately 15 Hz difference between the two)nthkis single tone will appear to
undulate in intensity as the individual excitatioogused by the two components will
constructively and then destructively interfere hwigach other as their relative phase
constantly varies over time. Above 15 Hz the amghkt modulations can no longer be
explicitly perceived and the sense is of a ‘rougimgle component sound. As the frequency
difference between the two components increasesémse of roughness continues but at the
point where the combination of the two excitatiowvelopes yields two distinct peaks then
two distinct components are heard. The criticaldvadth is defined as the frequency
difference between two components at the point whien sensation caused by the

combination of these two tones changes from ‘roaghsmooth’ [Watkinson, 1999].

So far the perception of two tones that are simitafrequency and intensity has been
discussed. Where one tone is significantly higimeiintensity than the other then the
dominant tone will tend to mask the second tonesKifey is the decreased audibility of one
component of a sound in the presence of anotherpapnemt [Watkinson, 1999]. The
masking level is defined as the amount by whichttiteshold of audibility for one sound

component is raised by the presence of the maskdngd component [American Standards
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Association, 1960]. Since the excitation envelopthe basilar membrane is not symmetrical
neither is the masking pattern created by a comyofiéne masking effect of a component
decreases more slowly with increasing (logarithinfrefquency than it does with decreasing
frequency, a situation known as the ‘upward spdatiasking’ [Plack, 2005]. For example
for a narrowband masking stimulus of level 80 dB-$Entred at 410 Hz the masking level
of audibility of a pure tone at 800 Hz is approxieta 45 dB whereas at 200 Hz this level is
less than 10 dB [Egan and Hake, JASA, 1950].

The critical bandwidth for a given frequency angkirsity is not the same as the resolution of
the frequency discrimination of the auditory systérequency discrimination is the ability
to differentiate between two tones of the samelleVkis is measured as the ability to
discriminate between two successive tones withewdifft frequencies (a measure known as
the difference limen, or just noticeable differender frequency) or as the ability to
discriminate between two tones, one unmodulatedtlamather slightly modulated (known
as the frequency modulation detection limen). Expentation has shown that the just
perceptible difference in frequency between twaetois approximately 30 times smaller than
the critical bandwidth. Although some models of thelitory system assume that the basilar
membrane acts as a bank of filters with fixed fesguies, there is no evidence that this is
actually the case and it is more appropriate, whasesible, to view this system as
performing a continuous frequency analysis withitéinoutput resolution [Moore, 1997]
[Watkinson, 1997]. This is a primary motivation fimodelling of sound with time varying
oscillators and noise filters in this thesis. A @&t overview of frequency analysis systems is
given in the next chapter of this thesis.

It is not just proximity in frequency than can caume component of a sound to obscure
another. Temporal, or non-simultaneous, maskingrsowhen the audibility of a component
is diminished due to the presence of a second coemtdhat is present either just before or
just after, but not during the first component. ward (pre-) masking, where the masking
component precedes the masked component, shouldencdnfused with auditory fatigue,
which is the shift in hearing threshold after aatiekly loud stimulus has been applied for
some time and then removed, and auditory adaptatlioh is a change in the perceived
intensity of a tone which has been continuouslg@néed. Backward (post-) masking, where
the masked component precedes the masking compasenit currently well understood

and in listening tests has produced variation sults according to the experience of the test
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subjects. Indeed highly practiced subjects dematestregligible backward masking [Moore,
1997] and recent research has suggested that flyivenrelated to learning difficulties since
people with language difficulties often exhibit geificant elevated thresholds for this

[masking] paradigm” [Roth et al, 2001].

Pre-masking occurs for maskers which are usuallyjust a few hundred milliseconds
duration and the effect is limited to signals whazttur within about 200 ms of the masking
component reduces. The amount of masking incresssttee masking component increases in
intensity and/or the time interval between the atss of this component and the masked
component. A short duration 4 kHz tone will hawethreshold of audibility raised by 40 dB
17.5 ms after the cessation of a broad band maskingonent with a spectrum le¥eif 50
dB. The same tone will have its threshold raisedusy under 10 dB 37.5 ms after the

cessation of a masker with a spectrum level of 0 dB

This section has outlined the limitations in theligbof the ear to discriminate between
sound components which occur close to each otheitlwer time or frequency. As will be
discussed in the next chapter this ‘blurring’ ofltiple components into a single perceived
component, or the obscuring of one component irpteeence of multiple components is a

facet of any time-frequency analysis system.

2.24 Analogiesof audio

Since sound is of finite intensity which diminishegh distance and the human auditory
system has finite sensitivity the communicationsotind over long distances, or through
dense materials, requires technological intervenfim allow sound to propagate over long
distances it must be converted to a form of energigh can propagate over such distances
and/or be amplified. Transduction is the processrelly energy is converted from one form
to the other. The production and sensing of sdwasda number of transduction stages as the
energy is converted from mechanical (sound prodogtio acoustic (sound propagation) to
mechanical (transmission through the middle andrimar) to electrical (nerve impulses sent
to the brain). Inserting additional transducer® itttis signal chain can extend its useful

length.

% This is defined as the level of sound measurexdirHz wide band (the intensity density) and exgedsn dB

relative to 2Qu Pascals (0 dB SPL).
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If a diaphragm connected to an electro-acoustigsttacer is placed in the soundfield then
the movement of diaphragm caused by the variationpressure will cause a varying

electrical current to be produced whose varyingerty (or properties) is an analogue of the
acoustic signal. The output of this transducernsebectrical signal which represents the
movement of the diaphragm which in turn represtirgsacoustic signal (i.e. the sound). This
arrangement of a moving diaphragm with transdudechvproduces an electrical analogue
of the acoustic signal is known as a microphonee Tiverse arrangement, where an
electrical signal produces movement of a diaphragnth produces an acoustic signal, is
called a loudspeaker. It is common for the timeyway voltage of a signal to represent the
time-varying amplitude of the acoustic signal [Té¢aaps, 1996].

Since sound is time-varying pressure it is, byésy nature, transient. In other words it has
no physical permanence and it cannot be recallesubgequent analysis of the media that
sound or its analogues it pass through. As wedipatially dislocating sound from its source
it is often desirable to temporally dislocate ittbat it can be heard at a different time or
repeated. This requires a permanent change to e ima material which will represent the
entire sequence of variations which comprises ithe-varying signal. In other words the
signal must be applied to a material that has mgn®ince sound can be considered as
variations in pressure over time, a spatial dinr@msh which to store these variations is
required. A magnetic material is one which can eespto, and produce, magnetic fields.
Magnetic tape consists of a number of particlea afagnetic material covering a long thin
strip along which variations in an applied magnédigtd can be stored. This storage is
possible since the reorientation of the partickassed by the presence of the field is partially
retained when the field is removed. The field isdduced to and removed from successive
parts of the tape by moving it past the sourceheffteld which is an electromagnet whose
applied voltage is an analogue of the sound signbE stored. Thus variations of the signal
in time are stored as variations in the magnettdfalong the tape. In order to reproduce
what is stored on the tape it must be passed ¢tosesimilar electromagnet so that the
varying magnetic field caused by the movement eftdpe causes an alternating current to
be produced in the coil of the magnet which igr@etivarying analogue of the original sound
signal which, after amplification, can be convertetb an acoustic signal again by a
loudspeaker. Since the position in time of the awignal is directly related to its position
along the length of the strip, magnetic tape iemefl to as a linear access medium

[Jorgensen, 1995].
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Another common method of storing audio signal®istth a groove into a medium, usually
vinyl plastic, whose shape is an analogue of tigira sound signal. In order to ‘remember’
the medium should be made from a solid material ¢ine that retains its shape). This single
groove is recorded in a spiral from outside towattts inside of a circular disk of the
recording medium. The information is read from tireove via a stylus connected to a
mechanical to electrical transduction mechanisnugilyg a coil moving in relation to a
magnet) which travels through the groove as ittestan a turntable. This is a non-linear
access medium since different positions along ttoewg can be accessed by moving the
stylus across the spiral rather than through iffebent parts of the audio signal can be
accessed much more quickly with a non-linear, gsgd to linear, access medium [Davies,
1996]. A third method is to record sound signalstlas variations in the area and/or
luminance of a photographic image and this is contyneow soundtracks to motion pictures
are stored with the varying intensity of light shog through the ‘sound image’, placed
lengthways alongside the still images for the videeing the analogue of the amplitude

variations of the sound [Hartstone and Spath, 1996]

2.25 Channd bandwidth and dynamic range

A channel is a path through which a signal can pass which it can be stored. It may be a
volume of air, a length of copper cable or a grooweinto a vinyl disk. Since the signal is
transferred/stored as the analogue of one, or nwiréhe physical characteristics of the
channel, the faithfulness of this analogue to thgimal signal is directly related to such
characteristics. As examples these characteristag be the elasticity of the material into
which the signal is etched, the coercivity of thegmetic particles whose orientation
represents the signal or the resistance of theeropgble. It is also the interaction between
medium and transducer that defines the channehaonel quality might also be dependent
on the velocity of the stylus in the record groawe of the tape that moves past the
electromagnet. As well as ifshysical characteristics a channel, or any system, may be
described in terms of the difference between aasigiput to it and the altered signal at its
output. When these properties change over the tiechannel or system is described as
time-variant, when they do not change over tims described as time-invariant [Lynn and
Fuerst, 1994].

Two important properties of a channel are its dyicarange and bandwidth or, a single

property that combines these two, its frequencpaese. A linear system is one in which
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changes in the input level cause a proportionahgban the output level. The dynamic range
of a channel is the ratio of the intensity of tlese produced by the channel when no signal
is present to the greatest signal intensity that loa recorded and reproduced from the
channel without non-linear distortion of the sigrsihce no channel offers absolutely perfect
linearity, reproduction of any signal at any lewall always introduce some distortion to the
signal so measures of maximum level are normakgriaonce the level of distortion has
exceeded a specified threshold. For example fornetagtape the maximum output level
(MOL) is determined as the level at which the thiatmonic distortion reaches 39oise

is measured as the output level from the channeinwio signal is present in it. There are
two other terms used in audio which are relatedytoamic range: headroom and signal to
noise ratio. The headroom of a channel is the rdiffee in level between the MOL and the
nominal operating level, which is the “design targegnal level of audio circuits”
[Convention Industry Council, 2004]. The signal rioise ratio (SNR) is the difference

between the noise level and the nominal operaéuel |

The frequency response of a channel is a compakbisbmeen a signal at the input to, and
output from, a channel as a function of frequeridtye magnitude frequency response is the
difference between the modulus of the input andwusignals. A channel with a flat

magnitude response is one where the differenceoduins between input and output is the
same for all frequencies of input signal. Justttes dynamic range is bounded by the
linearity of the channel within acceptable limits the bandwidth of the channel is bounded
by the limits within which the frequency responseacceptably flat. The phase frequency
response is the phase difference between the amglibutput signals. A channel with a linear
phase response is one in which sinusoids of agyémrcy each take the same amount of time
to propagate through it, thus the phase shift thtoed into the sinusoid as it travels through
the channel is linearly related to the frequencyhef channel. The rate of phase shift at a
particular frequency is known as the group del&ythé group delay is the same for all

frequencies then the channel has linear phaske lgtoup delay varies with frequency then
the channel has non-linear phase and the lineabioation of components at different

frequencies will be different between the input amatput since they are no longer

temporally aligned. Thus a channel can have anfiagnitude frequency response but may

% Third harmonic distortion is usually measured éyarding a single sinusoid at 1 kHz on to the tpe then
comparing the signal level at 1 kHz and 3 kHz (ttied harmonic) reproduced from the tape with tatelr
expressed as a percentage of the former. Thisusetul measure of ‘saturation’ or ‘clipping’ whidtcurs
when changes in the signal amplitude can no lobhgeepresented by proportional changes in the mediu
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noticeably alter a signal which passes throughittis has a non flat phase response [Blauert
and Laws, 1978].

Therefore a channel, like any system, can introchaiee and non-linear distortion into a
signal as well as frequency dependent changes/éh éd phase. It may also introduce an
overall delay and change in level between its irgnd output. An important design concept
for the majority of audio recording, transmissiomdareproduction equipment is that of
‘fidelity’ to the original signal. In fact consumawudio equipment is often referred to as ‘hi-
fi', a shortening of ‘high fidelity’. This fidelityto the original signal is determined by the
dynamic range, linearity and frequency responsthefchannels through which the signal

passes.

2.2.6 Digital representations of signals

In the previous section the quality of a channes welated to its dynamic range and its
frequency response. Where either of these extemglend the limits of human auditory
perception there is redundancy within the channdlahere they are within these limits the
signal may be audibly degraded. Clearly if the dgitarange is worse than that of the
auditory system but the bandwidth is greatexjioe versathen it is advantageous to perform
a transformation on the signal so that useful sigrfarmation can be stored in the ‘out of
human bandwidth’ part of the frequency range indh@nnel which, upon inverse transform,
will yield a signal with a greater dynamic rangBy sampling and quantising a continuous
signal it is transformed into discrete data. Thedadcan then be rearranged so that it best
maximises the capabilities of the channel. Thigigeaescribes the principles of sampling,

quantisation and channel coding.

When a signal which is continuous in amplitude andime is sampled it is measured at
regularly spaced instants in time giving a finiegiss of continuous values. Measuring the
signal in this way is the equivalent of modulatibgvith a train of pulses. Since a pulse is
constructed from the linear combination of harmalhyc related sinusoids the signal is
effectively multiplied by each of these sinusoilighe original signal has a bandwidth from
0 to 20 kHz then the frequency spectrum of the rtaddd signal consists of this spectrum

superimposed with shifted and reflected versiomgred at the frequencies of the sinusoids

which make up the pulse. These sinusoids (andeftbrer, the shifted spectra) arg =L

Ts
apart, wherdsis the time interval between successive pulsed-ansithe sampling rate. To
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prevent the original spectrum (the base band) appihg with its shifted versions its upper

limit must not extend more than half way from 0 téZs. If there is an overlap then signal

components which are greater thafwill be reflected and appear in the base band spact
2

at a different frequency. For example if a signblck contains a sinusoidal component at 25
kHz is sampled at 40 kHz this component will appesan ‘alias’, a sinusoid at 15 kHz, in

the base band. In order to prevent aliasing froouwg the analogue signal to be sampled

must not contain any components of a frequencytgrélaan =S, This upper spectral limit is
2

known as the Nyquist or Shannon frequency and resjtihe analogue signal to be low-pass

filtered (known as anti-alias filtering). This is@wvn in figure 2.2.

A

Filtered baseband

Filter response

-
Fs 2F 3Fs 4F
Frequency (Hz)

Figure 2.2: Anti-aliasing in sampled systems tovpre pulse modulation sidebands encroaching into
the audio baseband. After [Watkinson, 1994].

The compact disc (CD), which was the first widelaitable technology for distributing
digital audio, has a sampling rate of 44.1 kHz mgvia Nyquist frequency of 22.05 kHz
which is approximately 10 % higher than the 20 kblzen as the upper limit of hearing in
this thesis. The purpose of this margin is to alkwfficient stop band rejection for the anti-
alias filter (which needs to be higher than 90 dBcompletely eliminate aliasing) whilst
maintaining a flat frequency response over the 20tdH20 kHz range. Many professional
systems sample at 48 kHz and the initial reasothferwas so that the record/playback speed
of audio could be varied by +/- 10% (a feature r@fieby most professional analogue tape
machines) without any audible impact on the fregyaesponse of the recorder and without
the need for variable sample rate conversion whigls an extremely computationally
expensive process at the advent of commercialadligitdio. Currently much audio-for-video
is recorded at 48 kHz partly because this givesirdager number of samples per

SMPTE/EBU timecode sub-frame at the EBU rate ofraBes per second. Recently higher
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sample rates have become available in higher gefwimats such as Super Audio CD
(SACD) and various flavours of digital versatilesci(DVD) such as -V (video) and —A
(audio). The case for higher sampling rates, asafa the financial aspirations of equipment
manufacturers, has not been clearly made but,assdsearlier in this chapter, there may be
mechanisms by which audio components at a frequénglyer than 20 kHz might be
detected by humans, if not by the auditory systpetifically’. Also the pre-response of the
brick-wall digital anti-aliasing filters employed iover-sampling converters may be audible
to listeners who are less susceptible to backwaraisking [Robert Stuart, 2004]. Often a
lower sampling rate is used to increase the rengrdensity of a channel, such as the 32 kHz
‘long-play- mode available on some R-DAT recorders.

Having sampled a continuous signal at regular wader it still remains to describe its
amplitudes with numbers of finite resolution. Thi®cess is known as quantising since the
use of finite precision requires that a continuealsie be approximated to the closest within
a series of discrete values. The number of dismatees available determines the resolution
of the quantiser. In a binary system the numbedifférent values is2" wheren is the
number of binary digits (bits) available. For ateen bit linear quantisation system, as used
for CD, the number of available values is 65 536c&these values represent the amplitude

of the signal, the range of values that can beegggted is
20log,,(6553§= 96.3dl  (2.8)

which is the theoretical dynamic range of the gisant Since a continuously varying input
to the quantiser is output as a representationntio@es in steps between discrete values the
quantisation process is not linear (i.e. not evéhnaar quantiser can be perfectly linear
without an infinite number of quantisation levelgyhere an input signal is high enough in
level to exercise a large number of bits in thengjgar then the step distance is insignificant
and the quantiser is close to linear but whereirtpat signal is relatively low in level and
only uses 1 or 2 bits then this step size is siggnit. In such situations the quantiser is highly
non-linear and its output is a highly distortedsien of the input. The distortion is in the

form of additional components whose frequencies iateger multiples of those of the

“Another possible reason for a much higher Nyquisgdency than 20 kHz is inter-modulation of compuse
above 20 kHz causing distortion components belasvlittmit [Robert Stuart, 2004].

® This is actually a simplification of the calcutai of the dynamic range. The correct figure is giv®y
equation (2.8 + 20|ogo(f@/ ;z 98.1d in the 16 bit case. The reader is directed to Riiabn, 1994] for

further details of this calculation.
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components in the input signal. In other words toltil components have been added to the
signal which are correlated with those of the ormdisignal. Such distortion is highly
objectionable since it is fused with the originigingl altering its character. This effect can be
ameliorated by adding wide band noise to the ismyrial prior to quantisation. This has the
effect of ‘blurring’ the steps in the quantiser adelcorrelating the components added to the
signal by the quantiser from the input signal. Tlst of this process is that it reduces the
dynamic range of the quantiser. For example theofismise with a rectangular probability
distribution at sufficient level to render a systinear at all signal levels reduces the signal
to noise ratio by 3 dB [Watkinson, 1994].

Clearly for a given number of bits per unit time épace) the bandwidth and dynamic range
of the signal represented by the data can be detednmndependent of the bandwidth and
dynamic range of the analogue chafinlan analogue channel can accommodate a 16 bit
48 kHz digital signal then it can accommodate &R432 kHz signal which has a greater
theoretical dynamic range but a lower bandwidthisTis of obvious interest to audio
designers since it enables direct negotiation batvieese two quality criteria. So what effect
do the physical characteristics of the channel hawethe digital data it contains? The
integrity of this data depends on the ability af thgital to analogue converter, or decoder, to
differentiate between an analogue signal that sgmts a O and that which represents a 1.
Both the bandwidth and dynamic range of the chacawelaffect this ability. Since frequency
is the reciprocal of time a relatively poor highduency response in the channel will increase
the time taken for a transition to a high or lovalague level owvice versa Many channel
codes denote one binary value with two transitithin a given time period (e.g. low to
high and back to low again) and the other binaftyevavith just a single transition. If the
transition from one state to the other occurs towly then the signal in the channel will not
make it as far as ‘high’ for fast transitions. Téseent to which the signal can move from
high to low in the time available for such a traiosi is known as the ‘eye height’. Too low
an eye height will introduce bit errors. Noise imetanalogue channel, whose signal
represents the state of each bit, can also inteodhitcerrors as the additional components

may take the signal below or above the threshaithi® correct bit to be identified.

® In fact this is not quite true. Care must be takerensure that the binary code recorded in thermélais
matched to the capabilities of the channel andsdidig the sample rate or word length may have &tebn
this. A channel coding scheme is usually devisdokest match the raw audio data to the channel.xamele is
eight to fourteen modulation (EFM) code for CD whed bit chunks of data are converted to fourteen bi
representations, via table look-up, primarily t@iaviong strings of zeros which are of very lowdguency and
offer no mechanism for detecting bit transitions.
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An analogue channel will introduce bit errors am@ taverage rate of these errors is
dependent upon the dynamic range of the channelartogue channel with a relatively
high dynamic range will introduce relatively fewr@ns but the possibility of an error
occurring is not eliminated. For this reason adddi ‘error correction’ data is generated
from the audio data. The purpose of this additiolaa is for the reconstruction of audio data
which may be lost in the channel. A simple exampl#he addition of parity bits to indicate
whether the sum of a sequence of audio bits isoodelen. By arranging data into a square
matrix and adding a parity bit for each row anduomh if any single bit out of the matrix is in
error then this error can be detected and corre@ech a simple system is not particularly
robust (it would fail if more than one bit was imrgg) and CD uses a much more
sophisticated system known as cross-interleavadigselmon-coding (CIRC) which
generates about 30 % redundancy, i.e. for evetyitiord there are an additional 4.8 error
correction bits. Such a system will reduce the céypaf the channel but is essential for the
‘perfect reproduction’ attribute that is so oftessaciated with digital audio by the layman to
be realised. It should be remembered that no eowection system can eliminate errors but
they can be made extremely rare. It is interedtingote that computer disk drives which are
commonly used to store extremely high resolutiogital audio (e.g. 192 kHz and 24 bit
digital words) have an analogue channel with aaigm noise ratio of only 20-30 dB. It is
the extremely high bandwidth of this analogue clehnvhich allows such vast amounts of

high resolution digital audio to be delivered fodeerrors in real-time.

There is considerable design flexibility in digisistems. The bandwidth and dynamic range
of the digital signal can be negotiated indeperigent those attributes of the analogue
channel carrying it or storing it and there is tapability to correct errors which enables
perfect transfers of audio data without loss ofligpaThis has made digital storage and
transmission ubiquitous for audio media. As will Biscussed in the next chapter, the
availability of general purpose computer systems dadio processing and generating
operations, has also been a tremendous benefigitdlchudio. It is digital audio data, in the

general format described in this section, that glgmal analysis and modelling methods

described in this thesis operate on.
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2.3 Organisations of sound

The core of music as culture is organised and mgéuli sound. Its character can best be grasped by
contrast with other media and their forms of sigifion. Musical sound is alogogenic [i.e. not
conducive to be expressed in words], unrelatedatmguage, nonartifact, having no physical
existence, and non representational. It is seHregftial, aural abstraction. This bare core must be

the start of any sociocultural understanding ofimy8orn, 1995]

So far the nature of sound, human perception ohédand the transmission, storage and
reproduction of sound signals have been considé&espectral model of sound must take

account of its nature and human perception of iidi data are required to produce a
spectral model which then requires synthesis apbdeiction to be heard. A brief overview

of these areas has been given as preparation domthre specific discussions of spectral
modelling that follow this chapter. The rest ofsththapter deals with the deliberate
intervention of human beings in the production arghnisation of sound and the signals and

data which represent sound in order to create music

2.3.1 Definitions of music

The western postmodern understanding of ‘what missics perhaps best reflected in this

statement about the distinction between music amdnnusic:

The border between music and noise is always @llyudefined - which implies that, even within a
single society, this border does not always passutih the same place; in short, there is rarely a
consensus ... By all accounts there issimgle and intercultural universal concept defining what
music might be. [Nattiez trans. Abbate, 1990].

The point here is that even the broad dictionafindimn of music given at the beginning of
this chapter may not find agreement amongst alpleeivom all cultures. An example of this
is the lack of distinction between music and danceome cultures. Assumptions about the
nature of music and musical sounds which may bedfixn one society may be invalid in
another. Whilst what is known as the western Ewaopat music tradition may have been
concerned with notions of music produced from alkrfigzed palette of largely harmonic
instruments (i.e. instruments whose modes of \ilmaare approximately integer multiples
of a fundamental mode) elsewhere there is a prteréorinharmonicity such as in the
campesinaculture of Northern Potosi in Bolivia [Cross, 2008] in the gamelan music of
Java and Bali. Whilst it is important to acknowledthese different definitions and

conceptions of music there must also be a statfoitd®n of certain concepts as these apply
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to work in this thesis, indeed it is a crucial paftthe engineering design process. The
viewpoint presented here is therefore of music aslaly auditory phenomenon which may
be the result of an acoustic event, an electrodiconse or a combination of both. The
original source of the sounds, or components ohdpheard may be physical or synthetic
(i.e. energy generated in a non-acoustic domainthed converted into acoustic energy).
Components of music may be grouped into particiylaes of features such as those related
to time or frequency such as rhythm (time), pitélequency) and timbre (time and
frequency). Many sound modelling systems assumendracity. This is avoided in this

thesis in the light of what has been discussebiggection.

2.3.2 Parametersof music

The French word timbre can be literally translassd ‘stamp’. The American National
Standards Institute (ANSI) definition of timbre (i#nglish) to describe sound is “that
attribute of auditory sensation in terms of whichisiener can judge that two sounds
similarly presented and having the same loudnedspénh are dissimilar” [ANSI, 1960].
Whilst timbre is dependent upon the frequency akll ratios of any stable sinusoids
present in a sound it is also dependent upon thpdeal evolution of frequency and level for
each sinusoid and of the level, bandwidth and eefnéquency of components that are not
localised in frequency [Risset and Wessel, 1998pa@isations of sound in the western
European tradition before the advent of electranigsic can be seen as arrangements of
notes, a note being an individual sounding of geaibThe sounding object, if designed for
the purpose of producing music, is referred to asweical instrument. Confining our
discussion to a monophonic instrument (i.e. oneitheapable of playing only one note at a
time) the attributes of a note are its pitch, loegkand timbre as well as how it links to other
notes that come before and after it. This latteibatte is known as articulation and a simple
distinction here might be that between ‘detachedth( a temporal gap between notes) or
‘non detached’ (the onset of the next note occutieasame instant as the termination of the
previous note). Whilst all other attributes maydstermined entirely by the player of the
instrument the timbre is largely associated wité ihstrument itself i.e. it is the auditory
‘signature’ of the source of the sound. Some ims&nts allow a great deal of control over
timbre, for example the way that a piano notenscéton a keyboard can vary the timbre (as
well as the intensity) significantly. Other instrants do not offer such control, an example
being the pipe organ which shares the same inteittgout with the piano but whose keys

are little more than switches turning the air sygpla resonant pipe on and off.
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Representations of music in this tradition are Ugua the form of a ‘score’. A score is a set
of written instructions for performing music. A seanust be rendered by instrument players
in order to be sensed by the human auditory sysStdten a score will contain very precise
instructions such as ‘crotchet = 120’ (play at aespof 120 quarter notes per minute) but
they may be more vague such as ‘adagio’ which fime as “At ease [from Italian] (not so
slow as largo but slower than andante” [Kennedy0]9In addition to the language of the
score (i.e. the system of notating pitch, timingl articulation) there are the notions of
performance practice and interpretation. The forreea set of conventions to be observed
when playing a certain kind of music, or music tentin a particular era and the latter is an
additional input to the control of timing, artictitan etc. on the part of the performer to better
match the rendered sound to the needs of the ag]iémeir own artistic aspirations or the
intentions of the composer of the score. In additio the score there are also traditions of
improvisation and the oral dissemination of musicatructions where a performer learns

how to play a piece by hearing someone else play it

2.3.3 Music and audio technology

The advent of recording systems has allowed thiopeance, an instantaneous and unique
event to be captured and replayed. In addition rabmu of separate performances can be
edited together to give thepressionof a single, continuous and spontaneous event Thi
modification of captured performances can be tdkeher to the manipulation of signals as
part of the compositional procegsnew approach to composition using recording masshi
musique concretdegan with the work of the French composer PiSateaeffer who coined
the term in 1948 which was originally designed tibedentiate it from synthetic electronic
music produced using simple tone generators andr adbch means [Kennedy, 1980].
Musique concréteonstructed music from the recordings of ‘concrebgects (i.e. recordings

of real, physical objects made using a micropho8ehaeffer’'s celebrated first piece in this
idiom Etude aux Chemins de FERailway Studies’) was created solely from redngs of
steam locomotives [Born, 1995]. With such a pideerecording medium becomes the score
and this is the only means of rendering the peréorce — there is no set of instructions that a
human being can follow with an acoustic instrumg@nte the music must emanate from the
concrete source of the original sound material.r&urtechnology enables recordings to be
made and stored digitally on random access media asicomputer disk drives. Fast random
access devices enable the assembly of musical simps at performance time rather than

having to be rendered in non-real time by spligmgces of tape together or by assemble
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editing. This offers the option of extemporaneous comfsitising concrete sounds or a
set of playback instructions can be devised atdabmposition stage to be executed at
performance time. Such a set of instructions, @aldrly if intended for interpretation by a

computer system rather than by a human operattireofomputer playback system is called
an edit decision list (EDL) which, when used ae@ df musical creation, can be considered

to be a score.

Abstract electronic music uses signals which amthgtically generated (i.e. are not the
result of acoustic to electric transduction) anddsonot have a concrete source. The first
electronic synthesizer was probably the ‘Telharmomiof Thaddeus Cahill, patented in
1897 and first demonstrated to the public as a tetezystem in 1906. It used a system of
dynamos with shafts with differing gear ratios t@quce alternating currents of different
frequencies. These signals were rendered acougtiwalhorns connected to modified piano
sound boards and were later distributed to listerfermes via the telephone network with a
horn connected to the telephone receiver to retigeracoustic signal audible [Williston,
2000]. With the invention of the triode vacuum tudfée Forest in 1907 the amplification of
electrical signals was possible meaning that ausignals (synthetically generated,
transmitted or recorded) could be amplified prior ttansduction enabling them to be

reproduced via loudspeakers at sufficient levdéda@udible.

Other innovations in the field of electronics sadhfilters and non-linear devices, in addition
to flexibly manipulated media such as magnetic taiewed signals to be processed and the
use of such devices for the modification of audexdme a means of expression in the
composition of electronic music. The strict defit of musique concrétes recorded sound
that has not been modified electronically but tlermary between concrete and abstract
electronic music has become less clearly markedtowe and the term is considered archaic
by some [Kennedy, 1980]. There is little agreementprecise definitions of the terms
electroacoustic and electronic music. Electroacousts a precise engineering definition
which is an adjective describing any process wimeblves the transduction from electrical
energy to acoustic energyce versaThus electroacoustic music is any form of muisat t

requires loudspeakers for its performance andghise definition which is adhered to in this

" Assemble editing is the process of compiling a posite signal from different recording signals different
portions of the same signal) by recording the wadusignal excerpts in the required order contiguposi one
system from the playback output of another. Thisdsopposed to ‘cut and splice’ editing where thedia
storing the original signals is physically manigeathto produce the desired contiguous sequence.
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thesis. Electronic music was a term applied totedacoustic music to that was mausique
concréetebut the terms electronic and electroacoustic leee®me interchangeable for many
people, hence the use of the adjective ‘abstracts far to refer to electronic music using

wholly synthetic sounds

2.34 Music and computer technology

Whilst the application of electronic devices to lagae signals offers the potential to alter
sounds in a variety of meaningful ways, systemskvhilow manipulation of digital data, be

it a general purpose computer or dedicated digitdio processing device, enable audio to be
modified by any process that can be described bgree mathematics. For example, two
audio signals represented by such data can be rtogether by addition or a signal can have
its level altered by multiplication. These two peeses can be accomplished in the analogue
domain using a bus bar and an amplifier respegtildat the processing of audio as data
“allows tremendous opportunities which were dentedanalogue signals” [Watkinson,
1994]. In addition, rather than requiring a spectfipe of electronic device for a particular
processing task, a general purpbsedwaredigital device such as a central processing unit
(CPU) or digital signal processor (DSP) can be tathip a different audio signal processing
task if given a new set of instructions (knownsagtwarg. The practical outcome of this
thesis is a software algorithm for spectral moditiien of audio which can run on general

purpose computer hardware.

With such tools available for the manipulation ofieo the composer is able to exert much
greater control over the timbre of sounds tharossiple when providing a set of instructions
for players of acoustic instruments. The time etiotuof individual spectral components, the
relationship between those components in the fregudomain and their spatial dimensions
and position are examples of how this control caxXerted on synthetic or recorded sounds

through the use of a computer. The composer D&malley observes that:

Prior to the electroacoustic period music alwaylved identifiable sources. The listener could
spontaneously link both to a sounding body andraamny physical cause. Gesture not only activated
the source but could, through breathing and bowtrobrnand techniques of touch, maintain and
continue the sounding of the vibratory system. TWiawklly, therefore, there is an inherent,
culturally imbedded, stabkource bondingn music. Source bonding is the term | use to esalape

the natural tendency to relate sounds to supposedeas and causes, and to relate sounds to each

other because they appear to have shared or assboiigins. [Smalley, 1994]

8 See [Landy et al] for a more detailed discussibthe etymology of these terms.
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There are a myriad of processing/synthesis paraligat can be assumed when composing
music in this way such as additive, subtractiveysptal modelling and spectral modelling

synthesis. These are discussed further in thewollp chapter.

2.3.5 Implementation of computer audio processing

The EDL as a form of score has already been disduasd this leads to the discussion of
languages for interacting with computer hardwarr @efining computer software. Computer
languages can be categorised by their level, aléoet language being one which can be
acted on by computer hardware with relatively dittdr no translation and a high-level
language being closer in terms of language (orsiplys visual representation) to a form that
a human being could easily recognise and interatt ¥ high level language will require
translation into a set of machine instructions datmown as code) which can be loaded
directly onto the target computer hardware and @eec(or run). Machine code is the lowest
level computer language, the instructions it corgatannot be further broken down into a
larger set of simpler instructions. This code cstssof binary numbers which represent types
of instruction that the processor can execute, rusnbr memory locations where data can be
stored and read from. A specific task, such asutatiog the cosine of an angle, can be
described as a series of instructions for the msmeto carry out at run-time. Usually such a
series of instructions will be designed specificédir the processor to be as short as possible
(in order to reduce execution time) and/or to usditle memory as possible. Entering
instructions in this way gives exact control ovemwha processor performs a particular task
but is counter-intuitive (instructions are reprasdnby binary codes which have no
representative meaning) and time-consuming (taskspeogrammed as a series of single

instructions rather than as groups of instructions)

An assembly language is one level removed from machode, it still specifies single
instructions for a particular processor but it usgsemonics to represent each instruction
giving them representative meaning. An ‘assemigeogram is required to convert these
mnemonics to machine code that can be executedveAlibis are general-purpose
programming languages such as C which offer afsearamands for describing tasks which
may, and often do, require multiple machine indtams in order to be executed. Another
feature of such a language are control-flow corsitas for decision making (using thé
andel se statements), recursion with testingh{ | e, f or anddo) and so on [Kernighan
and Ritchie, 1988]. A compiler converts this lang@ia machine code. There is usually an
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intermediate stage where ‘objects’ are producedchviziontain machine code along with
references to other existing machine code that rbasincluded in the final executable
program in order for it to run. The descriptorshiigvel and low-level are relative terms, C
is a higher level language than assembler butweron level than languages that offer, for
example single commands for file reading and wgitiHowever the use of libraries (such as
the ‘math’ and ‘standard 10’ libraries for C) whicdre readily-specified instructions for
performing certain tasks is straightforward sincsirgle set of C instructions (a program)

can be specified in more than one file.

Generally the higher in level the language the nadrstracted it is from the hardware that it
runs on. This means that the programmer has |leskeas control over how their instructions
are carried out and so is less able to ensuretlikainstructions are carried out in the most
efficient way for the hardware that they are perfed on. This can be a serious disadvantage
when writing performance critical code such as thhich must be repeatedly completed
within a specific time, such as a real-time aldontfor processing audio data. In the same
way a composer writing a fast passage for a pdati@acoustic instrument must ensure that it
Is written in such a way that it can be played byean being at the prescribed tempo. The
definition of an algorithm used in this thesishattof a fixed set of instructions which will
perform a task and terminate with a pre-determitygz® of outcome. Algorithms often
consist of a large number of instructions which lddee prohibitively costly in terms of time
to specify in machine code or assembler. Howeveralgorithm will often itself use
algorithms that have already been defined for &quéar piece of hardware. For example the
Fast Fourier Transform (FFT) can be described uaifey lines of C code (using the maths
library) [Press et al, 1992] but a much faster F#iitten specifically or optimised for the
hardware on which it is running, can be used byessiog a specialised signal processing
library. An example of such a library is the Fastesurier Transform in the West (FFTW), a
library of FFT functions which can be called fron€grogram and which can be optimised
by calling a ‘trial’ function which evaluates whids the fastest FFT algorithm that can be
run on a given processor [Frigo, 1999]. The MATLA&8entific programming environment,
which uses a specialised high level language, tdsesFFTW and so provides a fast

implementation of this intensive process withinghHevel language.

Other such libraries are specifically designed é&orparticular processor, or group of

processors, such as Intel's Integrated Perform&mritives for its Pentium, Itanium and
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Xeon processors The FFT routines in these libraries are repottedun faster than the

FFTW on their target processors [Gonzalez and Lo2€01]. Libraries can either be

statically or dynamically linked to C code. Staticking refers to the inclusion of the

required code from the library at compile time, amc linking to its inclusion at run time.

Dynamic linking allows new versions of libraries be used with an executable (or other
dynamically linked library, or DLL) written in C whout the need for recompilation

[Microsoft, 2006].

With relatively few keywords (words which belongttee core language) and the ability to
combine these to produce complicated sets of ictsébns C is an intuitive language to use.
An example of C’s suitability to audio processirggthe fact that the symbols for array
referencing are very similar to those for represgntdiscrete time signals in signal

processing, where a value in square brackets iadicthe sample number (e.g{n|

represents theth sample of the signad, or thenth variable in the array). The flexibility in
using existing, often highly optimised, routines $pecific operations within new code offers
compiled code that is close to optimum efficien@spite not being written in assembler.
These factors combine to make C an attractive lagguor development. However, it is
important to consider the context of a processlggrahm when evaluating the efficacy of a
programming language with which to implement it.

Whilst library functions obviate the need to ‘reemt the wheel’ when dealing with common
signal processing routines such as the FFT, tiseséli a requirement for an environment in
which a new audio processing algorithm can be ugeag.audio processing algorithm will
need audio to process and it would be costly ttudecaudio file opening and closing, audio
playback, mixing and so on. The digital audio wteken (DAW), a computer based system
for recording, editing, mixing and processing audibers such functionality and processing
algorithms can be hosted by many of these systéhesterm ‘plug-in’ refers to a computer
program that can interact with another (the hastprovide a specific function. Very often
such plug-ins are dynamically linked libraries magnthat they can be installed
independently of the host and so do not requiréhtds software to be reinstalled every time
a new plug-in is required. Thus a hierarchy of fiomality exists: there is a host program
which provides a user interface and functions saghudio playback, below this there is the

plug-in which may be used to perform specific augliocessing tasks and below this there

° Pentium, Itanium and Xeon are trademarks of il ICorporation.
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are library routines which the plug-in can useédo@m specific tasks such as calculating the
FFT of some data or to display a graphical usegriate. Plug-ins must conform to a
specified format in order to function correctly i a host program since both the host and
the plug-in must know what data, and in what forreach requires from the other and when
it is required, and/or how to request it via fuonticalls. There are many audio plug-in
‘standards’. Some are platform/OS specific suchthes Apple’s Audio Units for their
Macintosh computers or DirectX plug-ins for Micréts@/indows. A popular cross-platform
specification is the Steinberg Virtual Studio Tealogy (VST) plug-in which is supported
by many DAW applications such as Steinberg’s @utase NuendoandWavelaband those
by third parties such as CakewallBsnarand Plogue’8Bidule The software development
kit for VST plug-ins is provided free of charge aggbentially supplies a C++ ‘wrapper’ into
which C code describing the real-time process eaim$erted [Steinberg, 1999].

C++ was developed as an extension of C at Bellilaltse 1980s. It was intended to allow
large software projects to be more easily manageg/emented and maintained. The
language retains all of the keywords from C whaldting new ones that offer new facilities
such as classes and function and operator ovenigadi class can consist of data and
functions which can be used to perform a particptagramming task. Classes allow aspects
of code to be compartmentalised making it easieddsign and write large scale code.
Function and operator overloading allow functionde defined according to the variables
they take [Stroustrup, 1997]. For example a fumctigth the same name may be defined to
behave differently when the input arguments aregats to when they are floating point
numbers. In C a different function definition woulejuire a different function name. In the
context of VST plug-ins, C++ provides a means foreriting the basic functionality which
all plug-ins require in a framework in which thed#gbnal functionality required specific to

the particular plug-in can be added quickly andlgas

Whilst C++ and plug-in technologies offer a muchktéa design and implementation cycle
than that of purpose built hardware they are nopgaefully designed as research tools for
the development of audio processing algorithms. W#TLAB environment mentioned
previously offers a number of advantages over the/@ug-in approach. Algorithms can be
implemented much more quickly since there is a widege of functions within the
environment for performing common mathematical saskany of which can operate on

vectors and matrices [Mathworks, 2006]. A wide edyriof tools for graphically representing
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data and transferring it between formats (suchudgdiles) exist. As is discussed in chapter
6, functions written in MATLAB'’s ‘m’ file languageélo not execute as fast as their C or C++
equivalents but interfaces between MATLAB and DLwstten in C exist for use where
optimisation for speed is required. The spectratpssing algorithm presented in chapter 6 is
written in a combination of the MATLAB and C langes. However it is envisaged that any
real-time processing tool which arises from thesaesh presented in this thesis would be
implemented as a VST plug-in.

Programming languages are not the only way thafposers can interact with a computer.
The type of DAW host application previously disasswhich will usually provide a
graphical user interface possibly augmented by eciafty designed hardware control
surface, are much more common means of interattian the languages used for creating
code. Very high level languages, suchC&ound also exist specifically for computer music
tasks.CSoundcompiles’ audio files from an ‘orchestra’ file,nich specifies the instruments
and/or processing functions (known as opcodesgtoded and how they are connected, and
a ‘score’ file which determines how and when th&rimiments are to be played (and/or how
and when processes are to be applied). A numbepafdes are provided withi@Sound
ranging from oscillators to phase vocoders and opeodes can be written in C [Boulanger,
2000].

2.3.6 Real-timeversusrendering

Users can interact with computers to produce mirsiceal-time as they might with an
acoustic instrument — a gesture is performed oinatruction is issued and the result is
immediately audible. Computer music also offereeoad means of working, as does any
means of music creation which involves manipulatbthe medium on which instructions
or audio signals reside (such as a piece of magtegie or a piano roll), which is non-real
time. Instructions and signals are recorded and #uglible output is rendered. The rendering
process may or may not happen in real-time, formgta a player piano will render its output
in real-time but a computer system will usuallydenoutput to a file which can only be
played out once rendering is complete. Non-reat timeraction may be the result of choice
(i.e. the composer does not want to extemporisef processing limitations. For a computer
to carry out a task in real-time the number ofringions per unit time required to perform it
must not exceed the number of instructions per tumié it is capable of executing. The

execution speed of processors has approximatelyleevery year as predicted by Moore’s
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Law [Moore, 1965] and so the number of audio prsicgsalgorithms that can be executed in
real-time has also increased. Spectral morphing f&#fw seconds of audio by time varying
interpolation between two sets of FFT data whictewa years ago would have had to be
rendered over a number of hours [Wishart, 1988] ean be easily performed in real-time
[Fitz and Haken, 2003].

Whilst real-time FFT and time domain filter basedqessing can now be executed in real-
time many processes which use these analysis tpramare still performed ‘offline’ (i.e. not

in real-time) since they require the analysis oblghsounds, or sequences of sounds, rather
than just successive portions of sound as theyegeaired in real-time. A real-time system
allows live performance with that system thus reimgvone of the three acousmatic
dislocation&’ in electroacoustic music as identified in [Emmerst994]. An example of this

is the spectral modelling of sound which is diseds& detail in the next chapter. The
primary objective of this thesis is to investigatev spectral modelling might be achieved in

real-time.

24 Summary

In this chapter some basic definitions of key teemd concepts that will be used throughout
this thesis have been introduced and a brief ogenaf the use of computer systems for the
manipulation of audio as part of a creative muspraktess has been given. The coverage is
by no means exhaustive and is necessarily seldotiva context for the work described in
this thesis within music, technology and the c@tuthat surround them has been described.
The first part of this chapter described the natfreound, its perception and the numerical
format in which it is stored and operated on in pater systems. The second part surveyed
the means and motivation for creative transfornmatas musical expression. Spectral
modelling is a mature field of audio signal proaegswhich offers many creative
transformation tools, however it is commonly coesadl to be an ‘offline’ process which
restricts its applications and appeal. This thesisstigates whether musicians who wish to

use spectral modelling tools need be constrainedch a way.

10 Acousmatic sound is defined as sound which whbgsipal cause is not observable by the listenendlyaet
al]. According to Emmerson “the truly fundamentabasmatic dislocations occurred in the half centary
1910:

Dislocation 1: Time (recording)

Dislocation 2: Space (telecommunications (telephoadio), recording)

Dislocation 3: Mechanical causality (electronic thgsis, telecommunications, recording)

There were ‘pre-historic’ versions of these distawas — the western score itself may be seen as-dm |
refer here to the physical wave trace in the firstance” [Emmerson, 1994]
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A recent organisational initiative in this countngs been the Digital Music Research UK
Roadmap, launched in December 2005 by the DigitabiM Research Network (DMRN)
which is funded by the Engineering and Physicalesms Research Council (EPSRC)
[DMRN]. This roadmap identifies strands in curreasearch in this ‘transdisciplinary’ field
and attempts to identify and stimulate its longrteaims. Although the roadmap was
published as work for this thesis was nearing cetgo it does fall into two of the broad
research ‘goals’ identified. When discussing theaaof musical innovation it is noted that
“developments are also expected within the aréda@®tomputer algorithms” and, in the area
of producing fertile environments for creativity bjectives must include ... [the
development] of human-computer interfaces bettgeduo supporting creative activities in
composition and performances” [Myatt, 2005]. Ithigped that the work presented in the

following chapters of this thesis contributes imsoway to these goals.
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3 MODELSOF SOUND

The main goal of musical signal processing is twvjsle musicians with representations that let
them modify natural and synthetic sounds in percpt relevant ways. This desideratum
explains the existence of techniques for synthesitgn supported by associated analysis
methods. [Cavaliere and Piccialli, 1997]

3.1 Introduction

This chapter deals in detail with the context ofs tithesis. Modelling, synthesis and
processing of sound are explained and in particadarent techniques and theory relating to
spectral analysis, processing and modelling ofmade presented. Although not a research
focus of this thesis some discussion of physicatleliimg and its relative merits compared
with spectral modelling are presented in order laxe the latter in the overall context of
sound modelling.

For simplicity many of the equations here refept@ase expressed in radians and angular
frequency which is the frequency (in Hz) multipliegg 277. However, where numerical
examples are given they are expressed in Hz shgeneasure has a more tangible physical
meaning. Later chapters present results relatifgetpuency in Hz. Phase is always referred
to in radians. The terms amplitude and magnitugesgnonymous with each other in the
literature although there is a tendency to use imdg to describe the time domain
magnitude of oscillation and magnitude for the fregcy domain equivalent. This latter
distinction is the one adhered to here. Where tomaain plots are shown the vertical axis is
unnamed as is standard practice in the literaflines axis ultimately refers to amplitude of

pressure variations in the corresponding acouglitat The lettefj is used to refer to both

v—-land scale, or level, of multiresolution/wavelet Iggis. It is clear which of these it

represents from the context in which it is used.

3.2 What isa sound modd?

A mathematical model is a description of the betawiof a system or event in terms of
numbers and the operations that can be appliddetn.tMathematical models often exist to
allow the simulation of a physical system since, dgample, it is much cheaper to have a
mathematical model of a prototype aircraft crasintthe real thing. Models are also useful
for imagining systems or events that could not payty happen, such as how life forms on

this planet might have adapted differently undéfiedent gravitational conditions.
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A sound model is one which describes a system eating, conducting, transforming or
sensing sound. For example models exist to exglain sound emanating from a point
source propagates through air (the inverse sqamreléscribed in the previous chapter) and
how changes in the intensity of a sound produceigés in the perceived loudness of that
sound. A distinction is made in this thesis betwagorocess and a model. A process is an
operation on a set of data which takes no accolumthat the data represents and does not
attempt to infer anything about the data, suchnasnalerlying structure, from the outcome of
the operation. A model attempts to derive a meduirgiructure from the data on which it
operates (it may even assunaepriori, an underlying structure) and may well use this
assumed structure to determine how it subsequeptyates on the same data. The Fourier
transform of data from the time to the frequencyndm is an example of a process, the
inference of the underlying processes that migkiehmoduced the original time domain data
is an example of a model. Models are useful sihey tllow us to better understand and
describe real-life systems that currently exist,dndextrapolation, to imagine those which
do not.

3.3 Methods of modelling sound

3.3.1 Imagining acoustics and mechanics: physical modelling

Physical modelling (PM) of sound is concerned wtk mathematical description of the
physical systems which create sound or modify spgndh as the string of a guitar or an
enclosed space in which sound reverberates. Thattiso say that PM is only concerned
with that which can physically exist, in fact oné the primary goals is to develop
instruments that could not physically exist (suchimstruments which can expand and
contract whilst remaining in tune) or that would peohibitively expensive to create or
recreate such as a reverberator like the origiatiedral building in Coventry, which was
destroyed during the second world war.

Two important forms of PM are what is known as sieal modelling using a lumped
(homogeneous) model and waveguide modelling thes ws distributed (heterogeneous)
model. Lumped models describe a sound generatormodifier in terms of the

interconnection of masses, springs, dampers andlimesr devices and this way of
modelling is often referred to as the ‘mass/spripgradigm. Distributed models tend to

model the propagation of vibrational waves throogfects rather than how each tiny part of
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the object responds to a force applied to it by thevement of its neighbour. The
relationship between the displacement of a mass ft® equilibrium positionx), its velocity

(%} its acceleratior{d_zzxj, its massf), the stiffnessK) of the spring it is connected to
dt

and the mechanical resistand® (o the movement of the mass in fluid surrounding
given by Hooke’s Law and Newton’s Second Law of Motas the following second order
differential equation.

2
d_ZX +B(£Xj+—Kx:O (3.2)
dt m\ dt m

Whereas the behaviour of a spring connected toss s a resonator can be modelled by a
second order filter, the delay caused by ideal ggagon through a series of masses is
modelled by a delay line (known in this contextaagvaveguide). Since waves travel at a
finite speed through physical objects the time mateetravel through a particular material is
dependent upon the distance travelled through ithis way spatial separation between parts
of a PM instrument are modelled by time delays aithh losses at key points due to
absorption and dispersion are still modelled asr8l In fact the two types of model can be,
and often are, combined [Smith, 1996]. The mathmalabasis for waveguides is given by

the solution to the wave equation in one dimension:
d’y _(1)\d’y
— = = |—= 3.2
ax (CZJ I

where, for a vibrating string, is the displacement of the string from its equilim position,
x is the distance along the stririgs time andc is the speed of wave movement along the

string, a constant value given by:
c _K (3.3)
£

WhereK is the string tension andis the mass density of the string. Essentially)(&2ans
that the curvature of the string is proportionalthe acceleration of the string in tlye
direction and inversely proportional to the squafr¢he speed of wave propagation in the
direction. The solution to (3) by D’Alembert is:
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y(x t) = y+(t+§j+ y‘( t—l‘j (3.4)
C C

Where y*and y~ represent two waves travelling in opposite dimwi along the string

wherey is an arbitrary twice-differentiable function. Théore the displacement of the string
in the y direction at pointx and timet is given by the sum of these two waves. This
displacement can be sampled at any point alongstifieg, at any time, by sampling at a
particular point in a delay line at a particulammgde number. This analysis of wave
propagation is not confined to strings. For examjplean be adapted to acoustic tubes and
extended to two dimensions to model membranesatitrée dimensions to simulate rooms
[Murphy, 2000].

Both types of PM require something to be ‘donethe instrument to make it sound. An
initial condition is often specified such as a thsgment of a mass or the initial shape of a
plucked string will be loaded into a waveguide.f&iént physical acts such as striking or
bowing a string can be realised by causing a tiragying velocity, displacement or
acceleration to be applied to a part, or partg physical model, breath can be simulated by
injecting broad band noise into the system andrsolbe interaction between the ‘exciter’
(the cause of vibration) and the ‘resonator’ (tlerf applied to the vibration) in PM is an
important aspect of how the instrument functionamiany acoustic instruments the resonator
feeds back to the exciter causing changes in thia¢ion pattern which is injected into the
resonator and this behaviour can be easily replicet PM.

PM offers intuitive models firstly because the paeters of the model are, by the definition
of PM, closely related to the parameters of a pdgisical object (even if the instrument
cannot physically exist its structure is still béhsen that of a real, vibrating system). For
example the velocity of a physical movement (sushaahand moving a mouse) can be
mapped to the relative bow-to-string speed of aibgwaction which is the excitation for a

PM instrument. This relative speed can then be m@pp the magnitude of the force exerted
on the mass (or masses) which the bow is in daeatact with. This gives some connection
between the gesture that generates the sound hathphiysical causality that might be
associated with that sound [Howard and Rimell, 20@nce PM is the only form of

modelling that directly describes the source afansl it is the only paradigm that offers such

immediate control of physical gesture type inpotghe system.
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A recent study at the Helsinki University of Teclogy (HUT) made a comparison between
different synthesis systems. The tasks which PMbvess suited to were identified as:
. simulation and analysis of physical instruments
- copy synthesis
- study of the instrument physics [sic]
- creation of physically unrealizable instrumgeaf existing instrument families

. applications requiring control of high fidelity
[Tolonen et al, 1998]

A disadvantage of PM is that it usually require®panalysis of an existing system in order
to produce a model, a model cannot be readily ddrjust from audio data for example. A
principal feature of PM is that the model will aftehange drastically from one instrument to
another so each instrument will require consideratestment in design before it can be
realised but perhaps will more readily offer, owélner sound models, the nuances of sound
production and subjective ‘character’ that acousistruments possess.

3.3.2 Deconstructing what we hear: an overview of spectral modelling

Whereas PM is concerned with sound as it is geserat its source so spectral modelling
(SM) is concerned with describing sound as it asiat the receiver (e.g. ear or microphone).
The components of a PM system are imagined versibphysical components of a sound
source, the components of an SM system are generato filters of simple sound
components that can be combined to reproduce gt isound. SM can be seen as an
extension of two well known synthesis techniquedditave and subtractive. Additive
synthesis creates more complicated sounds by tiiicadof simple oscillations which are
usually sinusoidal. Many additive synthesizers roffentrol over the relative amplitude of
different components and possibly their relativeing as well. Often these two parameters
can be controlled over time. Subtractive synthefliers pre-defined wave shapes (such as
pulse or sawtooth) and noise sources which canob@&ined and filtered to produce the
desired output. Here a spectrally rich sound igesfawith and portions of it are removed by
filtering. So-called ‘sample and synthesis’ systaliew users to load audio data for use as
the starting waveform before using time-variantefé and amplifiers to alter the sound

produced.

There is an acoustic precedent for additive symhebich is the pipe organ. A keyboard

(sometimes pedal board for feet as well) instrunveimich produces sound by blowing air

! Meaning applications requiring high fidelity ofrtteol of the instrument’s performance parameteosto be
confused with ‘Hi-Fi’ reproduction systems discus$ethe previous chapter.

40



through pipes of different lengths (some simpleedlu others containing some sort of

vibrating object such as a metal reed). Air presssiprovided by a wind chest into which air

is pumped from bellows. By a system of stops therator/performer can select pipes which
have a different pitch (either an integer multiptea rational number representing a common
musical interval such as the octave plus a fiftmpwn as a quint) and/or timbre and these
stops can be used in combination to provide conabseeinds of varying timbre. With a large

number of stops a wide variety of different timbesgl dynamics can be produced although
the operator has no control over the timbre of eadividual stop — this is fixed.

The output of time-varying additive synthesis cam described by (assuming that the
function is centred around zero, i.e. there is ffeeb as there is in equation (2.5) of the

previous chapter):

x(t) =3 A®sin@rf tt+g) (3.5)

wherep is the ‘partial’ number (a partial being a singlausoidal component of the output
sound). The lowest partial is also known as thed@mental. Note that for time-varying
synthesis the amplitude and frequency of eachgbasten independent function of time. It is
common in additive synthesizers for the upper alrtto have a frequency which is an
integer multiple of the frequency of the fundameéigag. the Kawai K5000 synthesizer) but
at least one exists (Synergy GDS) where the freqyuestios need not be integers or rational
numbers representing a common interval [Bellinglaant Gorges, 1998], [Vail, 2000]. This
latter type of additive synthesizer can be seem agynificant move away from the fixed
harmonic additive synthesis of pipe and electrggaos which opened up new areas of timbre
and tuning system design [Carlos, 1986]. A sinusaashalysis and resynthesis system which
tracks the slowly changing parameters of individpattials from frame to frame is the
McAulay and Quatieri (MQ) system. This system lifdestials across frames and uses cubic
phase interpolation at synthesis between framegrooluce smoothly changing partial
frequencies [McAulay and Quatieri, 1986].

The theory that any periodic function, no mattewrtmmplicated, could be decomposed into
the superposition of a number of sinusoidal fumdiof different amplitudes and different,
but harmonically related, frequencies was firstestaby Fourier in1807 [Robinson, 1982].
This theory has had a tremendous impact on mangctspf science and other disciplines

and it is an important result for additive syntlesince it implies that any periodic Wavefor4m1



can be recreategkactlyby a sinusoidal additive synthesizer. In otherdgaany audio signal,
provided it is periodic (i.e. it repeats itselfragular intervals), can bmodelledas a sum of
functions that are perfectly localised in frequenSince sinusoids cause the narrowest areas
of excitation on the basilar membrane, and canefbex be seen as the simplest spectral
component of sound, this model can be seen as waletms of perception and complete in
terms of the range of complex functions it can espnt. The previously cited HUT study

gives the following assessment of sinusoidal agelisynthesis:

The parameters arairly intuitive in that frequencies and amplitudes aasye[for the user] to
comprehend. The behaviour of the parametego@ as the method is linear. Perceptibility and

physicality of the parameterspsor.? [Tolonen et al. 1998]

The Fourier sinusoidal additive model is both effecand intuitive for deterministic signal
components. A deterministic function is one whosgguot at a given point in time can be
predicted from the parameters of the function. Eeample, provided we know the start
phase and frequency and amplitude trajectories sshasoid we can predict what its value
will be at any instant in time; there is no unceainvolved in the process. In contrast a
stochastic process is one whose instantaneous waoeot be perfectly predicted. An
example of a stochastic process is white noisetwban be produced by a random number
generator. Since it is a random process the ngxiakivalue cannot be predicted from the
previous one or from any initial conditions. Howeaerandom process can still be described
in terms of its spectral content and its probapitiensity function. For a random number
generator to produce white noise it must not bseutput on knowledge of previous output
although it may have a probability density functibiat is not rectangular (i.e. all numbers
have an equal probability of occurring). A singleced has a rectangular probability
distribution since each of its six numbers has quakprobability of occurring. The addition
of two die has a triangular probability functions Aore die are added the distribution tends
to a normal distribution (Gaussian function). Whitgise has a flat power spectral density
which describes how a signals power varies witguemcy. Other ‘colours’ of noise include

pink noise where the power spectral density asnatiion of frequency falls at 6 dB per

2 In [Tolonen et al, 1998] a number of differenteria are evaluated with one of three descriptoosr, fair or

good. The following criteria are used to evaluaite synthesis parameters. Intuitivity is how wed arameters
relate to a musical attribute or timbral qualityer&eptibility is how well parameter changes are peajpto

noticeable changes in timbre. Physicality descrhoms well a synthetic instrument’s parameters &poad to

those which a player of a physical instrument mighfamiliar with. The behaviour of a parametereigted to

how linear the parameters are since this desclibeswell changes in parameters can be relateddoggs in

output.
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octave, giving equal power in frequency bands efaégvidth since each successive band has
double the width of the previous band. Since cadunoise does not have a flat magnitude
spectrum it is not perfectly random since the aurkalue will be determined to some extent

by recent values.

Therefore stochastic (or ‘noisy’) processes caddxeribed but their instantaneous value can
never be perfectly predicted. Since noise existsaircontinuous frequency range it
theoretically requires a sinusoid at every freqyenithin that range (i.e. an infinite number
of them) to reproduce it. Even in a discrete systeenmodelling of noise with sinusoids is

expensive and counter-intuitive.

3.3.3 Spectral Modelling Synthesis

The first and principal difference between vari@minds experienced by our ear, is that

betweemoisesandmusical tones[Helmholtz, 1954]

The Spectral Modelling Synthesis (SRISsystem models the spectrum with both
deterministic functions (slowly varying sinusoidsjd stochastic processes (time varying
filters applied to a white noise source) [Serra899 SMS uses sinusoidal amplitude and
frequency tracks and filter coefficients which améerred from short time Fourier analysis
(discussed later in this chapter). A further eximms$o spectral modelling is the separation of
transient events. Transient, or suddenly changing)ponents usually occur at note onsets
often as the result of non-linear excitation or gnesence of very highly-damped (so very
short-lived) sinusoidal oscillations which appeambaoad band components due to their short
duration and fast changing parameters. Again, bb@adi components are not well modelled
by sinusoids since the latter are perfectly loealisn frequency. Parametric lossy audio
coding attempts to reduce signal bandwidth by d@iscy audio as sinusoids, transients and
noise. Bandwidth is reduced since filter coeffitgeeand sinusoidal data can be sent at a much
lower sample rate than the original time domaini@udita. Transient data is usually
transform encoded (i.e. it is not modelled but $yntipansformed into the frequency domain)
and thresholding is used to reduce the amountaotormed data [Levine, 1998]. Another
spectral modelling system is the reassigned bahesvihanced additive model [Fitz and
Haken, 2002]. This is a homogeneous model whidngits to model all signal types with

sinusoids of varying bandwidth. The bandwidth efusioids is increased where required (i.e.

% In this thesis the acronym SMS refers specificailyhe spectral modelling system described bysSiSerra,
1989]. The acronym SM refers to spectral modeliimggeneral, just as PM refers to physical modeliing
general. Therefore SMS is a subset of SM. 43



for modelling of noisy processes) by adding low spditered noise to the amplitude
estimates. The reassignment technique (discusssetiion 3.10) is used to produce accurate
estimates of sinusoidal mean instantaneous fregquéinequency reassignment) and for

sharpening transients (time reassignment).

These extended systems perform better in termerodrglity (since the systems are suited to
a wider range of sounds) in the HUT study. The nugies of SM are described as:
. simulation and analysis of existing sounds
- copy synthesis (audio coding)
- study of sound phenomena

- pitch shifting, time scale modification
[Tolonen et al. 1998]

Changing the duration of a signal can be achieyetebampling audio at a different rate to
that at which it was recorded. For example, if adi@a sequence recorded at 48 kHz is
replayed at 24 kHz, the duration of the signal Wwéldoubled. However, when time scaling is
performed in this way there is also a reciprocaftsin pitch. Since each individual
oscillation now takes twice as long to occur fregre(and hence the overall pitch) is halved.
This relationship between frequency and time isdisince they are the reciprocals of each
other. The terms time-scaling and pitch-shiftingally refer to time-scaling independent of
pitch and pitch-shifting independent of time anési can only be achieved by analysis-
modification-resynthesis of the sighabince SM involves the description of how the sm@éc
characteristics of sound components vary over tineemodel is clearly amenable to time
and pitch scaling/shifting independently of eadheot The quality of the resultant scaled or
shifted sound is dependent upon the quality/appatgress of the model and the

scaling/shifting algorithm employed.

SM is the main subject of this thesis and muchisf thapter is devoted to common spectral
analysis, modelling, and transformation techniqugsfore this other sound models are

briefly considered.

3.3.4 Other sound models

There are many different taxonomies of synthess ssund modelling. Serra makes the

distinction between PM, SM and ‘abstract’ modelsiolthhe defines as “models, such as

* The term ‘pitch-scaling’ here can be confusingssimas discussed in the previous chapter, pitdefised as
an attribute of perception related to frequencyreHbe ‘physical pitch’ of a combination tone idided as the
frequency of simple tone that would produce theesperceived pitch in the listener. 44



frequency modulation [which] attempt to provide moafly useful parameters in an abstract
formula” [Serra, 1997]. Smith adopts this taxonobwt adds a fourth group, ‘processed
recordings’, and refers to abstract techniquedgasithms rather than models which is more

in keeping with the definition of sound model givearlier in this chapter [Smith, 1991].

Modulation synthesis produces sound by modulating amplitude or frequency of a
waveform (the carrier) with the amplitude of a setowvaveform (the modulator). To
distinguish this form of modulation from vibratdd® frequency modulation) and tremolo
(slow amplitude modulation) modulation synthesisduces spectral rather than temporal
changes to the carrier by using a modulator whosguéncy is 20 Hz or higher. Ring
modulation (RM) results from the multiplication w¥o signals and is amplitude modulation
(AM) where the modulator is bipolar (i.e. it osatiés between positive and negative values).
The term AM usually refers to the specific casenoidulation by a unipolar signal (i.e. one
whose output values are either wholly non-negativeon-positive). The output of RM with

two sinusoidal signals with frequency,and f. is a complex tone with partials at the
frequencies( f,, - f.)and ( f, + f.). The output of AM is a complex tone with partiatsthe

frequenciesf,, (f,-f.)and (f,+ f.). Frequency modulation (FM) synthesis maps the

amplitude of the modulator to tHeequencyof the carrier. The output of FM between two
sinusoids is a spectrum with many more partials)tf@ AM since there are spectral

components at the sum and difference foand f,but also at the sum and difference of
f.and integer multiples off . Both forms of synthesis allow spectrally rich sds to be

generated from two simple waveforms. Waveforms roth@n sinusoids can be used but the
resultant output, particularly where both wavefoams non-sinusoidal, is difficult to predict.
The original motivation for the use of FM for sousyghthesis is that “in natural sounds the
frequency components of the spectrum are dynammidjnee variant. The energy of the
components often evolves in complicated ways; irti@dar during the attack and decay
portions of the sound” [Chowning, 1973]. FM becameely popular during the 1980s
through commercial exploitation of this technolday the Yamaha Corporation realised in
its DX range of synthesizers. FM is a computatipneheap means of producing synthetic
sounds with rich spectra which can be easily timeed. However the synthesis parameters
are not directly related to physical sound produrctas for PM) or to the linear combination
of spectral components (as for SM) and it is fas tkason that the ‘abstract’ classification is

used. The HUT study observes:
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The FM synthesis parameters are strong offendeithencriteria of intuitivity, physicality, and
behaviour, as modulation parameters do not correspo musical parameters or parameters of
musical instruments at all, and because the mathbighly non-linear. [Tolonen et al. 1998]

Despite these limitations accurate yet simple noaélthe sounds made by real physical
instruments have been produced. A study of smalthé3de and Tibetan bells uses a simple
combination of AM and FM instruments to model tloersd they produce and whose output

sound is indistinguishable from the acoustic oagiilorner et al., 1997].

3.4 A proposed taxonomy of sound synthesisand modelling

With so many different attributes of a synthesismadelling system to consider, developing
a functioning, clear-cut classification can beidiift, if not impossible. For a given situation
one classification may be more appropriate tharother. It is the belief of this author that
for many situations a split into two categorieshie most appropriate and intuitive; models,
processes and techniques based on the descriftitve @ibrating body creating the sound
and the environment in which it sounds and thosedb@n the decomposition of a sound into
simpler components and where these components ottiane and frequency. As intimated
in the previous chapter these categories generatiyrespond to an acoustic or
psychoacoustic conception of sound. These two aeasovered by the commonly used
terms ‘physical modelling’ and ‘spectral modellinigbwever, as stated previously, not all
processes or methods explicitly create a sound mBdeexample, a process which takes the
phase values from one input sound, the phase viluesa second sound and uses these to
produce a single output sound which representsrdic@tion of the two input sounds, does
not explicitly generate a model of the two inpuisf transforms them into another domain
(the Fourier domain, which is itself based on a ehtoaf a periodic signal as a sum of
stationary sinusoids) within which they are combin&o approaches to sound analysis,
synthesis or processing are either concerned vath $ound is produced or how sound is

heard.

Included in spectral approaches are subtractivdu@mng that based on audio samples) and
additive synthesis as well as FM and AM since thargeboth concerned with generating a
desirable spectral output rather describing theawelr of vibrating physical object. Whilst
the distinction between sound and sound generatstraightforward there are, inevitably,
some scenarios in which the distinction is not rcl€ar example, some vocoders attempt to
impart the slowly changing spectral envelopes & sound on to the same spectral regions

of a second sound. A classic application of thiscpss is to produce a ‘talking’ instrument
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where the formants are extracted from a speeclalsggrd applied to an instrumental signal.
Extracting the formants from a speech signal iseifpeivalent of separating the exciter (the
vocal folds in this case) from the resonator (tbeal tract) so it could be argued that this is a
process based on the sound generator/modifierrrtitha the sound itself. However this is
considered by this author to be a spectral proatsgsh also, in this particular example, has
an interpretation in terms of the sound sources tlassification is based on the fact that the
process is spectrally conceived and the desigrétipar parameters of the process are not

based on a consideration of the ‘physical caudefieosound.
3.5 Fourier analysisof timeseries

351 TheFourier seriesand transform

Fourier's theorem [Robinson, 1982] states that @og& function (i.e. a function whose
patterns of successive values repeat at the sdaergals) can be represented as the weighted
sum of an infinite series of cosine and sine fuomgj which are integer multiples of the

fundamental frequency of the functi@n, plus a constant term:

£(t) :% +ia“ cos(ut )+i b sinfwt. (3.6)

=A +i A sin(rwt+@ ) where A =&+, @, = arctar(%j (3.7)

n

The set of sine and cosine functions, {cosat, sinat, cosZd . sin2ut, ..., cosnat,
sinnawt}, where nOZ and w is the radial frequency, are orthogonal to eatlerobver the

interval —77 to 77. A set of real functiong,(x) that are piecewise-continugusn an interval

X, < X< xare defined as orthogonal over that interval if

| a(0@,(9dx=0,(nz M (3.8)
X

Which can be easily shown for cosine and sine terms

® A piecewise continuous function is continuous bibat a finite number of points. [www.mathworldrod

47



0,(n#0)

_Lcos@a)t Mt = {277, (=0) (3.9)

]Tsin(na)t)dt: 0 (3.10)

=T

70,.., (M, n% 0)

(3.11)
2m,(m=0,n=1)

]'Tsin(nwt)cos(rwt )dt:{
]Z cosfiut ) cosrwt Ht=7m0,,, (3.12)

]Z sin(nat ) sinmowt )dt= 70, (3.13)

=T

Where d,,,is the kroenecker delta function defined as:

mn

1m=n
:{ (3.14) [James et al, 1999]
0,m#n

The coefficients in (3.6) for a periodic functiotithvperiod 27%)are given by:

2n

=21 t()coset)t,nIZ - * (3.15)
Ty

2n

b :%T f()sin(nwt)dt, nOZ+  (3.16)

whereZ —* is the set of non-negative integers ahd is the set of positive integers

(3.6), (3.15) and (3.16) can also be expressednmtex form [Weisstein, 2006]:

f(t)= i Ae"  (3.17)

n=—o0



2n

w ? - jnat
Ahzzi f(t)e " (3.18)

%(an +b,),(n<0)

A = %ao,(n:O) (3.19)

5@~ 1B).(0>0)

It can be seen that from (3.6) that values &and b, occur at integer multiples of the

fundamental frequency giving a line spectrum. TiBighe case when the function being

analysed is strictly periodic and the period’-%. Figure 3.1 illustrates a continuous period

function in time and its corresponding line spettru
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Figure 3.1: A periodic function in time and its mBponding line spectrum.

In order to decompose an aperiodic signal the eliscsummation of harmonically related
sine and cosine functions becomes an integraleapehod of the signal tends to infinity and
the difference in frequency between each compotesrds to zero. The Fourier transform
generalises the Fourier series for periodic andi@gie signals. Adapting the complex

exponential form of the series, (3.17) and (3.18}he continuous case the Fourier transform

is given by:

f (t) =%TT F(we“dw  (3.20)
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F(w)= j f (t)e 1“dt (3.21)
Equation (3.20) represents the Fourier Transforoh @121) represents the inverse Fourier

Transform where the series of coefficie{shas been replaced by the function of frequency

F(w).

3.5.2 Thediscrete Fourier transform

As discussed in the previous chapter when a comtiisignal is sampled its spectrum
becomes periodic which is not the case for theiooats signals considered thus far in this
section. The discrete Fourier transform (DFT) discrete-time version of the Fourier Series

and is given by:

N-1 j2rkn

==Y X e " (3:22)
N-1 —J27kn
XW=Y ke " (3:23)

As implied by (3.22) and (3.23) the DFT is invelgibmeaning that a time series can be
completely recovered from its DFT by the inverseTDEDFT) within the limits of the
numerical resolution of whatever processor is usegerform the calculations. The DFT is
computationally expensive since to find the speutfar all values ok requiresN?complex
‘multiply and add’ operations. However, for parleulengths of input sequence a number of
repeated (hence redundant) calculations can bevesineading to much faster algorithms
for computing the DFT. These are known as fast iEouransforms (FFT) and were first
introduced into DSP literature in the 1960s [Cootenyd Tukey, 1965]. The FFT requires

N log, (N) calculations making itl%times faster than the DET
09,

As already seen, when using Fourier analysis aakigan be decomposed into a set of
weighted sines and cosines or as single set ofhtexigsinusoidal functions each with its own
independent phase offset. The DFT of a sequend¢ r@&al numbers produces a setMf

® It should be noted that this expression is baseithe number of complex multiplications required &ow
this relates to relative computational efficiencgynvary according to the programming language ardviare

being used [Lynn and Fuerst, 1994]. 50



complex numbers, apparently doubling the amountaté required to represent the signal in
the transform domain, but there is redundancy witthie complex data in the form of
complex conjugate symmetry. The spectrum is reftt@s shown in figure 3.2 around the

point (%)+1. Therefore the number of useful separate spectgwns (known as analysis

‘bins’) is (%)+1.
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Figure 3.2: The magnitude (left) and phase (rigiitthe DFT of a real valued sequence showing
complex conjugate symmetry.

Clearly, as the value i increases there are more frequency bins in theubanalysis. The
number of bins is related to the frequency resoitutf the analysis by the rate at which the
time series was sampled. For a fixed number of gssnfhe lower the sample rate the higher
the resolution (within the Nyquist limit) andce versaThe longer the duration, in time, of a
time series then the greater the resolution ofateysis will be. Any signal, continuous or
discrete, is subject to the uncertainty princi@kso known as the time-bandwidth product

theorem which is defined as:

TBZ% (3.24) where:

T2 = [(t=(0)° F (o) a

L (3.25)
B? :I(a)—<a)>) |F(0)| dw

where (t)and (w) are the mean values band wand | f (t)|2and |F(a))|2are the energy at an

instant in time and at a point in the spectrum eeipely. This principle can be informally
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summarised as “a signal component cannot simultetgdave a narrow bandwidth in

frequency and short duration in time” [Cohen, 1994]

3.5.3 Theshort-time Fourier transform for the time-frequency analysis of time series

The practical implication of the uncertainty priple for the DFT is that analysis of a shorter
time series will yield an analysis spectrum witlvér resolution. An assumption inherent in
Fourier analysis, as can be seen from the prewguations, is that the sinusoidal functions
are stationary, since the arguments of those fongtare linear. Little, if any, meaning is
conveyed in a sound signal comprised of componghtsse parameters do not change over
time. Taking the DFT of an entire non-stationarygiausignal does not lose any of the
information about how the signal changes over tigiece the process is invertible) but it is
encoded in the relative phases of stationary fonstiand deriving a single non-stationary
sinusoidal function from the superposition of a tem of functions with different

frequencies and relative phases is certainly nietatif not impossible.

It is useful to consider the following discussidrstationarity and non-stationarity in signals:

Since non-stationarity is a negative propertysitaplest definition refers to the corresponding
property: that ofstationarity Although this concept is theoretically well-defth only in a

stochastic framework, intuition attaches to it sosease for both deterministic and stochastic
signals: loosely speaking, a signal is considei@de stationary as soon as its relevant
properties remain relevant the same throughoutimlé. In a deterministic context, these
relevant properties are mostly related to the mat@eous behaviour of the signal regarding
amplitude and frequency ... In accordance with whatifion suggests, a deterministic signal
can then be considered as stationary if it condises superposition of components such that
their instantaneous behaviour ... does not depentints In such a case, Fourier analysis is

sufficient for a satisfactory and meaningful dgston. [Flandrin, 1989]

In order to depict the non-stationarity in a sigagala smaller number of stationary functions
the signal is divided up into shorter sub-sign&lspwn as frames, and a DFT analysis is
performed on each one. This analysis method moadilye shows non-stationarity by
showing a series of snapshots during which theasignassumed to be stationary. As each
snapshot corresponds to a different point in titrean be seen how the frequency content of
a signal changes over time, therefore it is a fofrtime-frequency’ analysis. This method of
time-frequency analysis is known as the short-titaerier transform (STFT) and it forms the

basis of many spectral processing tools for audid enusic composition. This thesis
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investigates how non-stationarity in both deterstiniand stochastic components of a single

analysis frame can be modelled in a real-time syste

The STFT of a continuous real signal can be matheaily expressed as:

F(t,a)):_[ f(r-tyy(r)e’'dr  (3.26)

—00

where y(t)is a windowing function applied to the signal. Badiscrete signal it is:

No1 _i2skn
X[rl g, K] = Z {ri,+nrje N (3.27)
n=-N/2

whererl 5 is the position of the analysis windowis the window number (i.e. the index of
each sampling of the spectrum) dnid the step size of the analysis windoy. is given by

the window length ) divided by the window overlap which is the numivéndows that

have non-zero values at any one samplaisually has compact support so the windowing
process localises the signal in time around thereeaf the window. The degree of
localisation is dependent upon the width and stapde window. Due to the uncertainty
principle a signal cannot simultaneously be hidbbalised in time and frequency and this is
negotiated in the choice of window length and shape most straightforward window
shape is the rectangular window which is defined as

NN

Vieat) = 1’(_2‘ } 2j (3.28)

0, (elsewhere)

The shape of this window in the frequency domaigiven by:

. N . N :
N/2 —jat IN/2 ey ey sm(a)j
MNw) = J. e_wdt:[—e_ } = e_ _€ = 2 (3.29)
-N/2 L

which is the sinc function (discussed further i8.8) [Harris, 1978]. Figure 3.3 shows a 128

sample rectangular window and the magnitude oDRJ. The DFT has been zero-padded
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and shifted so that centre of the window appealsrazero. Zero padding is explained later

on this section.
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Figure 3.3: Rectangular window and its DFT magretud

If modulated by a sinusoid this window shape iftstliso that the centre of its main lobe lies
at the frequency of the sinusoid. It can be seam fthe spectral plot of the window function
that a single sinusoid will not produce a singletical line in the spectrum but is spread in
frequency. A single line will only be produced bysiagle sinusoid where the rectangular
window is used and the window length is an exacltiple of period of the sinusoid. The

spectrum of the rectangular window has a relativedyrow main (centre) lobe but the
magnitude of the side lobes decays relatively slowhis is the main trade-off in window

design; that between main lobe width (often refiteas the ‘thickness’ of the spectral line
representing a sinusoid) and the rate at whichathplitude (or magnitude) of the side lobes

decays.

The window function that is used for STFT analysithis thesis is the Hann window, named
after Julius von Hann and also known as the vomiHB@anning and raised cosine window. It

is defined as follows in the time and frequency dors respectively:

Hran(0) =1+5co{ij (|t| sﬂzj (3.30)

2 2 N
. (ij
sin =y
I (@) = 5 (3.31)
Nw(l— N a)zj
A1
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Its time and spectral magnitudes are shown in &g (as for figure 3.3). It can be seen
that, compared to the rectangular window, the rtabe is wider but the side lobes decay at a
greater rate [Nuttall, 1981].
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Figure 3.4: Hann window and its DFT magnitude.

Windows applied in this way will have a linear,hat than a constant, phase characteristic
around sinusoidal peaks. This effect can be anatédrby a technique known as zero-phase
windowing. Here an odd number of samples is windbaed then the window is circularly

shifted so that the centre of the window is shittethe beginning of the time series. This has

the effect of keeping the phase constant aroundti@isary sinusoidal peak.

Whilst increasing the length of the windowed tineeiess increases the spectedolutiondue

to the trade-off between frequency and time gresppectraldefinition can be achieved with
the same length window by augmenting the inpuh®DRFT with zeros (zero-padding). The
output of the DFT is a more finely sampled versibthe output of a non-zero padded DFT,
the overall shape is still the same and the resolutf the analysis is no greater (i.e. the main
lobe and side lobes are still of the same levelsprdad over the same range of frequencies)
but the spectrum can be seen in more detail sirm® mata points are available per unit
frequency.

3.6 The phasevocoder

The term ‘vocoder’ is from ‘voice coder’, so callsthce an early application of a such a
system was to reduce the bandwidth of a speechldigrseparating the excitation part of the
signal (generated by the vocal folds) from the nasor part (filtering by the shape of the

vocal tract). The resonator part of the signalepasated by applying a bank of band pass



filters to the signal and then low pass filterihg utput of each of these to produce a set of
amplitude envelopes for each band, known as speetneelopes. Since the vocal tract
changes shape much more slowly than the rate athwthe vocal folds vibrate but it is the
vocal tract that produces different phonemes, thehmower bandwidth spectral envelopes
of the resonator can be transmitted/stored andghech can then be synthesized using a new
excitation signal modified by a bank of filters tmtled by these spectral envelopes. The
vocoder has also been used extensively in eledustic music to produce a hybrid between
two audio signals by taking the excitation parboé signal and filtering it using the spectral
envelopes of a second. A well known example is Webdrlos’s use of a ten band vocoder
developed by Robert Moog for an electronic realsabf Beethoven’'s Ninth Symphony in
the 1971 filmA Clockwork Orange

Whereas the filter outputs of a ‘channel’ vocoder ral for a real signal, the phase vocoder
uses complex filters to provide phase as well agnihade at the output of the filters
[Dolson, 1986]. Since the frequency of a singlausoid is the first derivative of phase this
allows the frequency of the underlying sinusoicb®estimated, although this assumes that
the output from a single filter is due to a singieusoid. If the output of the filter is due to
more than one sinusoid then the phase and magnialdes are still interpreted by the
system as if they were due to only a single sirdus@An important difference between the
channel and phase vocoder is that with the lateoutput, without modification, is identical
to the input [Moorer, 1978].

A phase vocoder for digital signals can be implet@@rwith the STFT, the magnitude and
the phase for a given analysis bk) &t a given samplel(), simply being the modulus and
argument of the complex output of (3.27). In ortteobtain the frequency of the underlying
sinusoid the difference in the unwrapped phasaksnt between adjacent analysis frames.
Then this phase increment, expressed as a fraofidghe phase for one whole period, is

added to the bin number:

AG (1) = arctar(
cos@ (1 )~ ((-1 )

sin@, ()-8, (¢ ~1) )j (3.32) [Moorer, 1978]

_( .08
@, —(k+ - jB (3.33)
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whereB is the width of the analysis bin:

_ 27k
N

B (3.34)

andF,is the sample rate.

3.6.1 Overlapping windows and over-sampling the spectrum

Although the non zero-padded DFT does not its@tlpce an increase in the data required to
represent a signal, the STFT with overlapping wimslaloes. If no modification is to be
performed on the data in the frequency domain th@m-overlapped rectangular windows
will be adequate. This is the critical samplingecdsr the STFT, if there is any overlap
between windows then there will be redundancy entthnsform data and if there is any gap
between the windows then the signal cannot be g#rfeeconstructed. However, the
purpose of the phase vocoder in the context oftti@sis is the modification of audio, and it
is generally necessary to over-sample the frequesiggctrum, giving a redundant
representation, in order to perform high-qualitydifioations. There are a number of reasons
for this.

For fast side lobe attenuation the window shoultinwoduce discontinuities at the edges
and therefore should be tapered. Without overlgpred windows will introduce amplitude
modulation into the reconstructed signal so oveilagp is required. Also, because of the
spreading in frequency caused by windowing theadigrsingle sinusoid will appear in more
than one bin. Considering (3.33), with no framertamping a value can be obtained in the
correct range for the peak bin but for the two ee€lje bins the deviation value could be in the
range of+1.5and this range increases with increasing distamre the peak. Such deviations
lead to phase offsets in the range edzwhich will produce incorrect deviation
measurements (for example frequency offsets ofl0band 1.5 will each give a phase offset
of ). Such incorrect deviation measurements will [eadlias frequencies appearing in our
analysis. With an overlap factor of 4 frequencyidgons of 0.8, 1.0B and 1.8 will give

phase offsets ofz/4, n/2 and 3m/4(since the phase only has a quarter of the time to

increment) which are unambiguous. Overlapping wivglover-samplehe spectrum and so

offer control over aliasing frequencies around soidal peaks.
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The greater the overlap employed in the time dontaangreater the range of bins either side
of a sinusoidal peak that give a correct estimétihe frequency of that sinusoid. Table 3.1
gives estimates for the peak bin and its eightedbeeighbours for a stationary sinusoid of 1
kHz with for overlaps of 1x and 4x. It can be sdlest there is agreement for the frequency

estimate across a greater number of bins where thergreater overlap.

1xoverlap 4 x overlap

bin Magnitude frequency magnitude frequency

estimate (Hz) estimate (Hz)
peak - 4 0.4 827.7 0.4 827.7
peak — 3 0.9 870.8 0.9 827.7
peak — 2 3.0 913.9 3.0 827.7
peak — 1 43.7 956.9 43.7 1000.0
peak 123.9 1000.0 123.9 1000.0
peak + 1 85.( 1043.1 85.0 1000.0
peak + 2 6.9 1086.1 6.8 1000.0
peak + 3 1.4 1129.2 1.4 1172.3
peak + 4 0.9 1172.3 0.5 1172.3

Table 3.1 Frequency estimates close to peak for differentlaps (figures given to 1 decimal point).

3.6.2 Timeand pitch scaling with the phase vocoder
Synthesis of a time-series from STFT data is agudwy the following equation:

1 N2 jkn
x[rIS+n]:NZX[rlak]eN (3.35)
k=0

where |, is the synthesis hop size. Perfect reconstrucsoachieved wheng =15, time
scaling is performed whehg #1 5. When time scaling is performed the phase of tRETS
data is interpolated by a phase propagation fortmuensure that the phase increment for the
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new hop size is consistent with the instantanemguency of its respective bin. Rearranging
(30) and introducing a time-scaling factdy where for T >1the resynthesized sound is
longer than the original, fof <1it is shorter than the original and for=1 the durations are

identical, gives:

Agk(synthesi}; =T(w —K) (3.36)

—
I
o

(3.37)

Pitch-scaling can be achieved by time-scaling withabove method and then resampling the
output. For example, in order to shift the ovepalth of a time series up by an octave (i.e.
double it) it is first stretched using STFT anadyand resynthesis with = 2 and then the

modified time series is decimated (every other dangpremoved from the sequence) to give
a final series that is the same length as the ibputvhich plays at twice the pitch due to the

decimation [Laroche and Dolson, 1999].

One problem with this method is that where a corepbns not a stationary sinusoid the
estimated instantaneous frequency for each binndraupeak will not be exactly the same
and so phase errors result which results in arooassed quasi-reverberant sound which is
referred to as being ‘phasey’ [Laroche and Dolst®97]. Another cause of this effect is
sinusoidal components which are slowly varying rieqtiency crossing into adjacent bins
between analysis frames and so causing a lackrdincity in the phase progression (since
phase differences between frames are taken betthieesame bin in each frame). A third
contribution to this problem is that, as statedvjmesly, the correct evaluation of the
instantaneous frequency for a bin surrounding & depends on the distance of the bin from
the peak bin and the degree of over-sampling ofspgeztrum. Although the windows used
for such applications are designed to focus enémgthe main lobé there may still be
noticeable energy contribution outside these bmd gince the instantaneous frequency is
not correctly evaluated for these bins, the modifshase trajectory will be incorrect. The

reverberant sound produced by lack of phase cobereetween bins “is simply an artefact

" For example, the peak side lobe level of the htBlackman-Harris window is 92 dB below the pealelef
the main lobe, although the trade-off is a mairelalhich is twice as wide as that of the Hann windeguiring
double the overlap to correctly resolve frequenfiedins within the main lobe [Nuttall, 1981].
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caused by beating between adjacent channels asrétaiive phases change” [Puckette,
1995].

3.6.3 Crosssynthesiswith the phase vocoder

A simple channel vocoder effect can be obtaineddaybining the phase values from the
STFT of one input signal with the magnitude valaethe STFT of a second input, provided
the window length is sufficient that successive niagle values to do not track the
oscillations of the underlying sinusoids but jubeit amplitudes. In this situation the
magnitude input is the equivalent of the slowlyywag control of the amplitude which is
applied to the sinusoids whose frequency is detexthby the phase input so the choice of
window length is important: too short and the magies of lower bins will follow the
oscillations of lower frequencies, too long andrafes in the amplitude envelopes will be
smoothed out and not tracked correctly. At a samgike of 44.1 kHz a window size of 2005

samples will smooth amplitude changes that ocatefahan 20 Hz.

The above method is often effective for producingseful hybrid output when one of the
inputs is pitched and homophonic. However, whetté bguts have pitched components and
the spectral peaks of these components do not apvdHen large magnitudes will be
combined with a phase which may be influenced dystant bin. This is likely to produce a
loud alias frequency which is not common to eitin@ut sounds. A method for overcoming
this and providing good separation between spectnalent and spectral envelope in signals
to be cross-synthesized in this way, known as #aqy shaping has recently been proposed
and implemented as ttf&hapeeproces& This method divides the spectrums of both sounds
in to ‘shaping regions’ which are the width of thmain lobe (4 bins for the Hann window
although the user may override this shaping regimth). For each shaping region an overall

magnitude weighting is calculated:

'\
> Mg(rw+n)
S(n =" r=012,..2  (3.38)
> M (rw+n)
=)

8 A real-time VST plug-in implementation @hapeehas been produced by this author as part of linitia
investigations into sound hybridisation methods aisd available for download free of charge at
www.jezwells.org. 60



Wherew is the width, in bins, of the shaping regiohkjs the number of analysis bins,

M.(k)and M (k) are the magnitude of th&h bin of the spectral envelope reference signal

and the frequency reference signal respectivelg. ditput spectrum is then defined by:
Moutput = M f(k) S(%) (339)
goutput(k) = gfrequenC)( k) (340)

The designer of this algorithm states that “thee@ffof scalingM (k) by this ratio is to

extract the spectral envelope fromil(k) while maintaining the localised frequency

information inherent toM, (k)" [Penrose, 2001]. WhaBhapeedoes demonstrate very

clearly is the importance of the relative magnisideound a sinusoidal peak as well as the

phase values for reconstructing components ofahect frequency.

Often when modifying STFT data, particularly whenmbining the magnitude and phase of
two completely separate sounds in this way, disoaities will be introduced at the edges of
the window where a change in phase has introducencalar shift of the time domain

waveform. If these discontinuities do not exactlsgtam up with those from a preceding or
succeeding frame at the overlap-add stage of trexse STFT then an audible click is likely
to result. To remedy this the output frames of 3i&-T can be windowed prior to overlap-

add in order to remove theses discontinuities. gperty of the Hann and Hamming windows

is that if an overlap oﬁlz 2is used then, in addition to the overlapping wind@aumming

to a constant, the power of that window, upNa1, will also sum to a constant [Puckette,
|

1995]. This means that, with sufficient overlapsthdditional windowing may be applied

without generating amplitude modulation at the atitp

It is not possible to cover every sound modificatamd combination process that makes use
of phase and magnitude data from the STFT herditoetand pitch scaling and traditional

vocoding/hybridisation are the purpose of manyheske.

3.6.4 Applying a spectral model to phase vocoder sound modification

A spectral model can be used within a phase vocoaeess even if the output signal is not

to be synthesized with sinusoidal oscillators anfiftered noise. Here spectral modelling is
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applied to find which parts of the Fourier spectrara due to stable sinusoids and which are
due to stochastic or transient signal componems. @ocess for pitch scaling only operates
on those parts of the spectrum which are due tdestanusoids since it is these components
and not noise or transients that impart a seng®tdi to the listener [Laroche and Dolson,
1999].

Correct identification of stable sinusoids is orfethe areas of investigation of this thesis.
Current methods vary in their levels of sophistarat The Laroche-Dolson method simply
defines a peak in the magnitude spectrum whichigben than that of its four nearest

neighbours to be due to a sinusoid.

This criterion is both simple and cost-effectivat Imight fail to distinguish local maxima due
to the presence of a sinusoid from local maximaesponding to the lobes of the Fourier
transform of the analysis window. Any more refirmtheme can be used instead, although it
was found in practice that this very basic techeigields good results. [Laroche and Dolson,
1999]

One of the goals of this thesis is to develop amuate such ‘more refined’ schemes for

achieving improved sinusoidal identification.

The modulation property of the DFT means that mlidtation in the time domain (such as
when a window is applied to time series) is eq@malto convolution in the frequency
domain. Therefore, as already seen, a stable, wedasinusoid in the time domain will
appear as an impulse in the spectral domain coadolith the spectral shape of the window
function itself. When a function is convolved wdh impulse it is shifted so that its centre is
at the same position on the frequency axis as thmgulse. Therefore, providing the
magnitude response of the windowing function isvimothe shape of a sinusoidal function
in the frequency domain when analysed with thati@dar window can be predicted. Clearly
the magnitude response is at its maximum for tharbiwhich the sinusoid resides so one of
the most straightforward ways of identifying a soul is by searching for maxima in the
magnitude response, and this is commonly thedtesi in sinusoidal identification (as for the
Laroche-Dolson method). The relative magnitudeswfounding bins can be used as a
measure of how close a peak in the spectrum ihdb af a stationary sinusoid. When
analysing peaks it is common to consider those bitter side of the peak up to local
minima on either side as a spectral region. TheidvidPicture Engineering Group (MPEG)
layer | and Il lossy coder/decoders (or codecs) aisemple measure that considers the
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relative magnitude of the peak bin and close neighd to determine whether a peak
represents a sinusoid (or sinusoids very closehegé frequency) [ISO/IEC, 1992]. A peak
is considered to be a sinusoid if the following dition is met, whereX(k) and X(k+i) are

magnitude components of a 1024 sample analysisfram
X (K) - X(k+ ) =7 dB (3.41)
For MPEG layer 1j is chosen as follows:
If 2<k <63theni =-2 and 2.
If 63<k<127theni =-3,-2,2 and 3.
If 127< k < 25C theni = -6, -3, -2, 2, 3 and 6.

The different ranges are a crude method of accogritir increasing critical bandwidth with
frequency. Values fok only span approximately half of the spectrum doeb@andwidth
constraints in low bit rate coding systems sucthasMPEG system. Sinusoidal peaks rarely
occur in isolation above 10 kHz in audio signalthwnore than one monophonic instrument

and so these are transform encoded.

3.6.5 Modelling non-stationarity

One of the assumptions of the STFT is that theatigeing analysed is stationary for the
duration of each analysis frame. Many signals, saglthose with vibrato or tremolo for
example, have continuously varying frequency andfoplitude and sinusoids which exhibit
such behaviour have different magnitude respormstdsse which are stationary. Modulation
has the effect of flattening the main lobe of thalgsed sinusoid. Figure 3.5 shows the main
lobes for a stationary sinusoid and one whose @&equy is increasing linearly at
approximately 172 Hz (the width of four analysiig)i and whose amplitude is falling
exponentially at 2 dB per frame for a 1024 samBk times zero padded DFT (sinusoid
sampled at 44.1 kHz). As well as assisting withitleatification of non-stationary sinusoids,
knowledge of this change in shape of the spectealkps important for estimating the

amplitude of such signal components.
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Given knowledge of the analysis window a ‘sinusbigfameasure can be applied to a peak
in the spectrum and its surrounding bins. This measure of the correlation between the

actual bin magnitudes surrounding the peak anavthdow function shifted to the estimated

frequency:
fpeaktB
rpeak: ¢ Z H(f)W(f) (3.42)
peak’

H(f) is the measured and normalised DFT &dd) is the shifted and normalised window
function in the frequency domai® is the half bandwidth over which the correlatian i
measured (often the bandwidth of the main lobéhefwindow function) and so the number
of points considered in the correlation measureeddp on the degree of zero padding used
in the DFT. Amplitude and frequency modulation efée can be accounted for by
suppressing the modulation or by estimating it ad@pting the window function W(
accordingly. In order to suppress frequency moéarat must first be detected. A method
for doing this is to estimate the fundamental figy of a sound and track how this varies
over time. This variation is then taken as beirgsame for all partials of the sound and is
suppressed by time-varying re-sampling of the difffeeters and Rodet, 1998].

A method, known as phase distortion analysis (PDi&), estimating frequency and
amplitude modulation analyses differences in plate/een bins around peak in the DFT
spectrum [Masri, 1996]. For a zero-phase symmetiledow function modulated by a
sinusoid the phase is shifted byat the edge of each lobe. When the amplitude clsange

during the window then the main lobe is widened #r&phase is no longer constant in the
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main lobe. For increasing amounts of exponentighlande change AA (measured in dB
per frame), during a frame the phase differencevdxet bins either side of the peak bin

increases. For increasing linear frequency chamdde,(measured in bins per fraMethe

phase difference between the peak bin and eacltesdjaeighbour increases. However
beyond a certain linear frequency change the pHdsrence falls and therefore a unique
frequency modulation value cannot be inferred fitbilen PDA measure. It is suggested that
the modulation value is assumed to be in the rahgee first monotonically increasing part

of the figure shown.

Since the phase difference between the peak aher etljacent neighbour is the same for
frequency modulation, and the same magnitude ltgreint sign for amplitude modulation

the two can be separated and independent measiessenl:

Afmeasure= A¢ peakl + qu peald (343)

AAhﬂeasure: A¢ peakl - A(ﬂ peald (344)

where Ag, is the difference in phase between the peak bin kand Af is the Af

measure

measure and\A, ... JS the AA measure. These measures are related to the avtuaind

easure

Af values by functions which are dependent upon ype bf window. For a Gaussian
window these functions can be analytically deriyemm phase and magnitude distortion
measures around a peak [Peeters and Rodet, 199@8fudr the Gaussian window, which
must be truncated for short-time analysis has awidin lobe (compared to the best least
suqgares fit Hann window) and is therefore not fagdufor sinusoidal analysis [Marchand,
2000].

PDA has been used to estimate modulation paramiersinusoids and to identify non-

stationary sinusoids within a single analysis frajinegrange et al, 2002]. OncAA and

Af have been estimated a sinusoid with these modaotateosynthesized and windowed and
the DFT of this single windowed sinusoid is tak&he magnitude of this DFT around the

peak is compared with that of the peak from whith AA and Af estimates were taken

using (3.42) thus extending this technique to natienary sinusoids. PDA, and its

° This means that the change in frequency is expdeas bin widths. For a 44.1 kHz audio signal with
window length of 1024 samples this width is appnexiely 43 Hz. The important thing to note is thaat f
different window lengths the same phase distomi@asure will be different.
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application to the identification of non-stationasynusoids is dealt with in detail and
extended to time reassignment data in the nexttehay this thesis and so will not be

discussed further here.

An alternative method has been proposed for estimdEM based on Fresnel integrals
[Master, 2002]. Considering the following equatifor a discrete sinusoid with linearly

increasing frequency:
X[ =sin(art + fn+¢) (3.45)

it can be seen that the argument of the sine fomctis a quadratic. The

integralsjsin(xz)dx andJ' cosg 0lx are undefined suggesting that a function defirtimg

shape of a windowed convolved with a sinusoid sashthat in (3.45) cannot be found
analytically. Fresnel integrals offer an accurateé limits approximation to the integral of
sine and cosine functions with respect to a squizreal.

Teod P g Lo L g T
C(u) = £ cos{TJm« 2+nu5|r( 2} (3.46)

u 2 2

s(y=[sin| 2 de Lot cod ™| (3.47) [Gautschi, 1965]

0 2 2 mu 2

Using these results the following equation for raating a from the DFT of the Hann

windowed signal is derived:

é‘, ~ _j r Hann(o) £(£j2 Azr Har;n(k)\] (348)
2 2 Ak

wherek is the bin corresponding to the peak in the speattdue to the sinusoid being
measured ani is the size of the (possibly zero-padded) wind®mce the second order
difference in this equation corresponds to a searyddr derivative in the continuous case
must be large for the approximation to hold [Masted Liu, 2003]. When the size of and

N (the length of the data used in each window, ieddpnt of zero-padding) is small
a cannot be accurately estimated as an imaginaryapaetars althoughr should be wholly
real. However “this imaginary part mimics the rapibthe real part to the correat value,

allowing us to solve the equation
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0{a}

x, +x0{a} = (3.49)

as a least squares problem to obtain optimal aoefiis x, and x,” [Masters and Liu, 2003].

The authors claim that this estimation method ibusb to AA. However, since large
amplitude changes drastically alter the time dom@imdow shape and (3.48) is specifically
formulated for the Hann window this author disagresgth this statement and experiments

show that Af estimates are significantly affected for largeA. PDA and the time

reassignment equivalent proposed in this thesisadopted because they offer estimates of

both Af and AA. Chapter 4 examines how the interaction betwéérand AA can be

accounted for.

3.7 Gabor and Walsh-Hadamard analysis

So far only Fourier analysis has been considerecuddio signals but, whilst it may be the
most popular and best understood method for timguency analysis, the STFT is far from
being the only method available. This section dises these alternative analysis techniques
and how the STFT fits into the overall context iofig-frequency analysis. The material in
this section also serves as a useful link betweeceapts introduced in previous sections on

the STFT and those in subsequent sections on wavele

The STFT belongs to a class of time-frequency amalynethods known as atomic
decompositions. These analysis methods comparegralsiwith an elementary signal
component, known as an atom, which can be shiftedime and can have different
frequencies, sequencies or scales [Auger et alg]1%FDr example the STFT atom is a
window function modulated by sine and cosine fuori at different frequencies shifted to
different positions of the signal. The signal isngared to the modulated window at these
different frequencies and positions. The corretabetween the signal and the atom at each

analysis frequency for a given point in time isagi\by the inner, or dot, product

G, p = F (O, ) = ]O f(m=tg* (9 dt (3.50)

—00

for a continuous signand:

G p = (X p) = 2. XM= rlg*  h (3.51)
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for discrete signals wherey,, jis the set of functiong/ shifted to the positiom [Qian,

2002]. The asterisk in these equations denotesdimplex conjugate.

Of course, any combinations of atoms may be usesipecific analysis tasks. An example of
this is a constant-Q analysis used for monophoraacstription [Brown, 1990]. Here
sinusoids which are logarithmically spaced in fregry, and are windowed by Hamming
functions of length inversely proportional to fremqey, form the time-frequency atoms. This
particular analysis system is designed so thatdomehtal frequencies corresponding to notes
in the equal tempered scale (twelve geometricgfced frequency intervals per ocatve) can
be individually resolved. This requires long windtemgths at low frequencies (greater than
6000 samples at a sampling rate of 32 kHz). Fardhalysis each time-frequency atom must
be pre-computed and stored in memory and the wemst non-invertible due to insufficient
sampling of the spectrum at higher frequencies,dvawthe system is successful, in many

monophonic, cases in isolating and describing iddial note events.

3.71 Walsh-Hadamard analysis

Walsh functions are an orthogonal set of functiarsch take the value of 1 or -1. The
sequency of the function is the number of zero stngs (transitions between 1 and -1)
within a given time interval. Zero crossings mayyaoccur at “fixed intervals of a unit time
step” [www.mathworld.com]. Walsh analysis may blaga to continuous signals but it is
highly suited to digital applications due to itséiy structure. Walsh functions, in sequency
(as opposed to natural) order, can be derived ftben Hadamard matrix (hence the
alternative name Walsh-Hadamard functions). A Haatadnmatrix is a square matrix whose
individual elements are either 1 or -1 and whosesrare orthogonal to each other (i.e. for an
nby n matrix the inner product of a row with itselfnsand the inner product of a row with

any other row is 0) [Weisstein, 2006b]. The 1 iyadamard matrix is given by:

H, =[] (3.52)

Hn Hn
H . =
“H, H
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For a discrete series of lendththe set of Walsh functions is theby N Hadamard matrix.

Whereas Fourier analysis can be used to efficieslscribe a signal composed of highly
localised frequency components Walsh functions rae suited to broadband signal
components and as such have been used in apptieaticch as speech coding to efficiently
describe broadband components with the narrow lwamdponents described by Fourier
coefficients [Spanias and Loizou, 1992]. Walsh gsialcan also be performed by full binary

tree decomposition with the Haar wavelet whichissdlssed later on in this section.

3.7.2 Gabor analysisand biorthogonality

In 1946 Gabor proposed representing signals joiimtlfime and frequency, in what he
referred to as ‘information diagrams’, rather tremply as a function of either time or
frequency. His diagrams represented continuousalsigrs collections of a finite number of
information ‘quanta’. These quanta are Gaussiantions modulated by sinusoids, although
this definition can be relaxed and a Gabor reptasen can be based on any normalised

window [Auger et al, 1996]. The form of the Gausdianction used is:

a - 2

vy =4% "% (3.54)
T

where ¢ is a parameter that controls the variance of timetfon (it is inversely proportional

to the time domain variance and proportional tofteguency domain variance). The time

bandwidth product is:

Therefore, recalling (3.24), this function is opailly localised in terms of the combined time

and frequency domains. The Gabor expansion ofreadid) is:

M P —a(t-mT)?/
tm=> e, pz\t/%e WML @t (3.56) (adapted from [Qian, 2002])

m=0 p=0
wheret and Qare the distances between sampling steps in the &nd the frequency
domains respectively. For an expansion to defiibel possible the critical sampling density

condition, TQ<2m, must be met. Note that (3.56) is given in ternfsterms of

reconstructing the signal from the Gabor coeffitse(c,, ,) and Gabor's work does not
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contain a practical method for deriving these doigfiits [Qian, 2002]. If any signal can be

completely reconstructed by multiplying the coeéiids c, from (3.50) or (3.51), by the
same set of analysis functions, as in (3.57) wieiea scalar which is 1 for the orthogonal

case, then that set of functiof,} __is an orthogonal or over-complete ba&is

(=53¢ (357)

It has been seen that any signal can be recoveoedifs STFT coefficients provided the
windowing does not introduce undulations in theetidomain envelope of the signal. Whilst
the Gaussian window is optimally localised in tbenf time-frequency domain it cannot be
overlap-added to sum to a constant as the windewtifuns discussed earlier, such as the
Hann and Hamming windows, can. Because of this ihe@cessary to find a set of dual

functions[;/n] such that
ndz

)=y Z< fO), O p>§/%e_”“'m”4 & (358)

m=0 p=0

o

In this case{yn}nmzand [yn] are said to form a bi-orthogonal or over-complete b
ndz

orthogonal basis. A valid dual function for thetically sampled Gabor expansion is:

: Gk a2 —rn+y)
y(t)=(47”J [ﬁ] et Y (e 7in+) (3.59)

7 n>{(t/T)-(1/2)

“‘where K, = 1.85407468... is the complete elliptical integfal the modulus%”.
2

[Bastiaans, 1980]. The functions described by (8w (3.59) foiT=1 and a = /7 and with

no modulation are shown in figures 3.6 and 3.7.hBibieir time domain shape and the
magnitude of the Fourier transform are shown. it ba seen that whilst the Gabor function
is well localised in time and frequency the duahdiion has poorer localisation in both

domains.

9 An orthogonal basis is a critically sampled repreation of a function (i.e. it contains the minimamount
of data capable of representing any function), &er-complete basis can represent any function and i
redundant.
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Figure 3.6: Gaussian function and its normalisedmitade spectrum.
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Figure 3.7: Dual of Gaussian function in figure 8r&l its normalised magnitude spectrum.

The Gabor interpretation of sound as quanta ofrinédion centred at points in frequency
and time has led to the field of granular synthesitarge group of spectral processing and
modelling methods, where a musical signal or soisndeen as being constructed from
‘grains’ of simpler sound structures localisedimé and frequency [Cavaliere and Piccialli,
1997]. In this sense the STFT is implicitly a griamuapproach because it uses an infinite
sinusoid (localisation in frequency) to modulatewandow (localisation in time). The
contribution of Gabor in 1946 and Bastiaans in 1B88 been to demonstrate that any signal
can be represented by quanta optimally localisedinme and frequency as a modulated
Gaussian (Gabor grain) and that a dual functionbeaderived to determine the magnitude of

the quantum at each point on a sampled time aqdérecy grid.
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It is the orthogonal STFT using the Hann windowt tisaused in this thesis for sinusoidal
analysis and, although Gabor analysis in the foestdbed here is not used, Gaussian atoms
are used for residual analysis in the form of weatgelvhich are discussed in the following
section. The discussion presented here is intetmlddmonstrate the link between the time-

frequency analysis of wavelets and the STFT.

3.8 Wavdets

Wavelets are atoms which ahbiftedanddilated (as opposed to modulated which is the case
for the atomic decompositions discussed so fathabtheir inner product with the function,

or series, being analysed can be found.

The continuous wavelet transform (CWT) is given by:

t-u

ewtiu )= O5v (') oo

where f (t)is the analysed functiom, is the centre of the analysis atasns the scale of the
atom andy(t) is the function describing the analysing wavelegl[lisk, 1999]. The scale of a

wavelet is inversely proportional to its frequeticyAt low scales the frequency of the
wavelet is relatively high and its duration is telaly short, at high scales the duration is
relatively long but the frequency is relatively loWhis is a fundamental difference between
wavelets and the atoms considered so far (whicinréhe same length regardless of their
frequency). This is because of the dilation of weevelet at different scales (the wavelet is
usually defined at the lowest scale and then psesyrely dilated, although it could be

defined at the highest scale and then seen as pesggessively compressed).

Since, through dilation, the duration of the waveteextended but its centre frequency is
lowered through a direct inverse relationship, blaadwidth of the wavelet varies linearly
with the centre frequency. This linear relationshgiween bandwidth and centre frequency

means that such analysis with shifted and scalectifins is ‘constant Q' analysfswhereas

1 Only certain wavelets have a constant instantamdteguency, many exhibit a range of instantaneous
frequencies over their duration. Reference is oftedle to the ‘main’ frequency (related to the nundfezero-
crossings) or centre frequency (the centre of th&iEr transform) of a wavelet.

2 Bandwidth is a measure of the localisation ofgnal component in frequency. This is often takerihas
difference between the frequencies either sidep#ak at which the magnitude response is 3 dB |dfaeT that

of the peak. Q stands for ‘quality factor’ and e tbandwidth divided by the centre frequency. Patdm

equalisers in audio equipment such as mixing cassptovide control over the level of signal cut &odst at 72



the STFT provides constant bandwidth analysis. isugsed in the last chapter, the ERB of
the auditory filter is approximately ‘constant @b 100 Hz upwards. This leads to a dyadic
division of the time-frequency plane as shown gufe 3.8 where, although the area which
each wavelet at different scales occupies remdiassame (as for the STFT at different
frequencies), the time duration is halved and tedividth is doubled at each higher octave

(unlike the STFT), changing the shape of the tinegrdency ‘tile’.

A

frequency
frequency

time time

Figure 3.8: Uniform (left) and dyadic (right) timieequency tiling.

This complementary change in time and frequencygluéisn is a key feature of wavelet

analysis since long duration, frequency localisednés can be depicted with, ideally, a
single wavelet at a high scale and a short durahgh bandwidth, transient event can also
be depicted, again ideally, by a single wavelea ddwer scale. Scaling can be likened to
‘zooming in’ to a very small part of a signal inder to determine the nature of sample by
sample variations or ‘zooming out’ to look at trend the signal over a larger part of its
duration. By contrast STFT analysis uses the samem’ level to look at both fast

fluctuations and slower moving trends in the signal

If the CWT is applied to identify certain comporentithin a signal then the analysing
wavelet can be of any required shape, such as lbpes(in the time domain) of the
components being searched for. If invertibility rfpet reconstruction) is required then the

wavelet must satisfy two conditions. Firstly it hbg admissible such that:

deaxoo (3.61)

“

the peak frequency, the position of the centredesgy and the Q of the filter. Varying the centreqfiency
whilst maintaining the same Q causes the bandwidtiary so such systems are ‘constant Q’.
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where W(w) is the Fourier transform af(t) which implies that thé?(0) = 0 which means

that the wavelet has zero mean in the time domaihiband pass in the frequency domain
[Calderon, Grossman, Morlet cited in Mallat, 199Bpr complex wavelets an additional
condition is that the wavelet must be progressieamng that its Fourier transform must be
zero for w<0(i.e. the wavelet should be analytic) [Grossmaralet1989]. An intuitive

explanation for these conditions is:

Literally the term “wavelet” meankttle wave In the most general context, a wavelet is a

function that satisfies the main (time domain) dtads:
1. It has a small concentrated burst of energy irtithe domain; and
2. it exhibits some oscillation in time

The first condition makes the wavelet “little” il sense that it is well localised in time,
whereas the second condition makes it “wavy” andcheawavelet ... Since a non-zero

function with a zero-mean necessarily has somdlatson, the oscillation requirement is met.
[Teolis, 1998]

3.8.1 Theundecimated discrete waveet transform

A common analysing wavelet for the CWT is the campMorlet wavelet which is a

modulated Gaussian function of which one form iegias:

Wo,(t) = e gt (3.62)

Note that this analysing function differs from tGabor function in (3.56) due to the dilation
inherent in (3.60). In order to compute the wavetsfficients for this, or any other kind of
wavelet, a discrete implementation must be fourtte Tirst step is to produce a discrete

version of (3.60), the discrete wavelet transfoDWT):

n—-u
S

owT(u 9= £ | "] @ed

with n,u, sZ. Note that in this form the discrete wavelet segeey[n] will require

interpolation or zero-padding under dilation simom-integer sample values will result from
this operation. An efficient implementation of (3)&vhich uses zero-padding is the so-called
‘algorithme a trous’ (algorithm with holes). Thiggarithm was originally implemented in

order to approximate the Morlet wavelet. This aldon finds the wavelet coefficients at a
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given scale for each sample by convolving the digmi¢éh a filter whose coefficients
represent the shape of the analysing wavelet. desk the signal is simply convolved with
the wavelet filter, at the next scale the filtedisted by the insertion of a zero between every
sample before convolution with the signal and tlaerihe next scale this dilated filter is

dilated again, doubling its length by the insertudrzeros, and so on at each scale.

The advantage of this approach is that the numbeom-zero filter coefficients remains the
same at each scale, reducing the computationalleaityp Since a filter dilated with holes is
not a good approximation to a sampled version efwhvelet at a given scale use is made of
a ‘pre-integrating’, low pass filter to perform émpolation on the signal at each scale before
convolution with the dilated wavelet. Successivavadution of the signal with this filter at
each scale (it is itself dilated) and then with thlated (with holes) wavelet filter at a given
scale is equivalent to the convolution of the sigméh the actual wavelet at that scale
[Dutilleux, 1988]. This iterative convolution witthe dilated low pass filter for each scale
and then convolution with the wavelet filter at $wale being analysed is common to both
forms of discrete wavelet analysis: the decimated andecimated discrete wavelet

transforms.

From (3.63) it can be seen that a discrete wawedasform implies a discretisation of both
scale and time. When using a sampled signal witlgigal filter the time quantisation of the
output will be the same as that at the input tofilter, hence with the ‘algorithme a trous’
the spacing of the resultant wavelet coefficiemgime is the same as that of the input
sequence. Also implicit in this algorithm, as désad, is the sampling of the scale axis by
the dilation of the wavelet filter. To maintain tkame number of non-zero coefficients at

each scale being analysed the scale should doobkath analysis so in this case (3.63) is

modified so thats=2", p0Z —*.

The search for wavelets for the analysis of digcsgnals that offer a useful time-scale
representation of the signal, are amenable to iefficcomputation and offer perfect
reconstruction has led to the development of whaknown as multiresolution analysis
(MRA) theory. An MRA describes a signal as lineambinations of nested vector spaces of
different resolutions. The finest resolution vectabspace in an MRA should contain all of
the square integrable functions (this set inclualégunctions that describe audio signals).

These functions have, by definition finite energytva norm given by:
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||f||éﬁ|f(t)|2dth<oo (3.64) wherd (t) JL3(R).

For any continuous functior(t), that satisfies (61) and a set of vector subspeces 17,

in an MRA the following relations apply foy,k 0Z:
f@)av, - f(t-2'k)dV, (3.65)

vV, OV (3.66)

j+1 i

V, - LA(R)asj - -o and/, ~{ P a- o  (3.67)

(3.68)

j+1

f(Hov, = sz(lzjmv

These relations specify, in order, invariance &mstation proportional to the sca®, that

any vector subspace is able to span the lowerutsolspaces, that the coarsest resolution
subspace contains on{ﬂ)} and the finest resolution subspace contains abiplesfunctions,
and that there is dilation (by a power of 2) ingade [Mallat, 1999]. FoV, a ‘scaling’

function, @, is chosen such that its integer translations famorthonormal basis for one of

the subspaces. A basis is the smallest set of ngetttat can span a vector space. In order to
span a vector space a set of vectors must be eapélibrming any possible vector in the
subspace by linear combination. An orthonormaladetectors is one which is orthogonal
and has unit norm. Considering these definitiond €h68) the scaling function can be
described with the following equation, known as ftthétion’, ‘two scale’ or ‘refinement’
equation:

%4;) = Z hrlg(t-1 (3.69)

where h[n] can be viewed as a discrete filter which can berdehed by:
nr :<i¢£1j A t- r)> (3.70) [Mallat, 1999]
=92/ : : :
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Each of the subspaced provides an approximation to the function beimglgsed. In
addition to these approximations a set of vecttasspacesV, which are complementary to

V, and orthogonal t¥,,, for any j 0Z can be defined:
Vi,=V,O0W (3.71)
V. Lw (3.72)

Therefore the subspad# contains those functions required, yet not avaglabV,, in order

to spanV,,. These functions represent the difference in ewol between the two
approximation subspace¥; and V. This difference represents the additional detail
provided at the higher resolution approximationt thas reason the subspave is seen as
that which provides the approximation to a functairievelj and W, provides the detail of
that function at this level. For the subspa@és function can be defined, as for the scaling

function, such that:

0

1 (t)_ )
S5 Saian @7

n=-o0

where:

o :%w@ At~ r)> (3.74)

This function is known as the wavelet functionsbhme literature, e.g. [Debnath, 2002], the
wavelet function is known as the ‘mother wavelettahe scaling function is known as the

‘father wavelet'. It can be shown that for an ogboal MRA';
[HW) +|GW|* = H(W|” +| H(w+ )| *=1 (3.75) [Qian, 2002]

and, from taking the inverse Fourier transform:

3 This is without loss of generality. The specifase in (3.75) is where the Fourier transform of shaling

function is 1 at DC(a): O) [Qian, 2002].
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ol =(-D)*"H1- 1 (72) (3.76) [Mallat, 1999]

Therefore g[n] and h[n are quadrature mirror filters (QMF). These filt@@n be used to

find the approximation and detail coefficients fam MRA which completely describe a
discrete signal at a given level of decompositioorm the approximation coefficients at the

next level:

@4m=imwzmam (3.77)

d =Y dr2mdh  (378)

n=-o0

and wherea;[m and d;[m] are the approximation and detail coefficientseatlj and at

samplem. This leads to fast, recursive algorithms for catimg the undecimated (‘a trous’)

and decimated (critically sampled) wavelet transfoFor the orthogonal wavelet transform
the signal can be perfectly reconstructed by simgiersing the high and low pass filters in
time:

0 00

a[p = _Z Hm-2 haj h+ _Z [9 m2 Indf ]t (3.79) [Mallat, 1999]
The wavelet analysis algorithm described in cha@ercombines the decimated and
undecimated wavelet transforms. This allows a traffiebetween computational cost and

redundancy/invariance.

3.8.2 Thedecimated wavelet transform

The decimated wavelet transform, when calculatedguthe type of recursive algorithms
described by (3.77), (3.78) and (3.79), is knowrtles fast wavelet transform (FWT). It
differs from the undecimated transform in that fiieer dilation process is replaced by
decimation (down-sampling) of the outputs of thkefs. This decimation reduces the
computational cost of the wavelet transform andatmeunt of data in the output. The output
of the FWT is time-scale data with coefficientsabdyadic grid. At the lowest scale (highest
octave) the sampling in the time domain is at itgssindense but the sampling in the

frequency domain at its least dense. For eachaserédoubling) in scale the bandwidth of
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the equivalent band pass filter is halved. Foead wavelet analysing a real signal the size

of the output can be identical to the size of tipuit.

In a digital audio system the initial sampled seupaethat represents the original signal can
be seen as the highest resolution approximatiaab continuous signal in the MRA. As
discussed in the previous chapter, provided ancasignal is sampled at a sufficient rate the
‘detail’ signal, which is the complement of the pmpximation’ signal that the sampled
version represents, only exists outside the freguelange of interest (the part of the

spectrum that can be perceived by the human aydijetem).

In order for the complete execution of such wavelatsforms to be possible on a computer
system the wavelet should have compact supporitmia since without this there will be
infinite coefficients or truncation at all scalés.order for there to be a finite number of non-

zero filter coefficients the wavelet functigp should have compact support. Considering
(3.73) it can be seen that this requirement imghes the scaling function should also have
compact support. Using (3.76) to derive either ldve-pass or high-pass filter coefficients

from the other implies that if one filter has aittnnumber of non-zero coefficients then so
will the other. The earliest known wavelet and scpfunction with compact support is the

Haar wavelet [Qian, 2002] The continuous Haar wavelet is defined as:

1, 0st<t
2

wit)=1-1, %st<1 (3.80)

0, elsewher

and its scaling function is defined as

¢(t)={ 1, 0st<1 (3.81)

0, elsewher

The low and high pass filters associated with thfesetions are given by the Hadamard

matrix:

4 The term wavelet was not used by Haar and wasopted until much later on in the developmenthif t

field.
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1
H, _‘_1 j‘ (3.82)

The Haar wavelet offers an intuitive insight intieetrelationship between MRAs and
wavelets since it performs piecewise constant aqmation to the function being analysed
and it is computationally cheap since it has tinoendin support of just two coefficients.
However, the Haar wavelet is not a good choiceafiproximating smooth functions since it
only has one vanishing moment. It has been denaigstthat for an orthogonal wavelet to
have p vanishing moments that it should have a suppag Erger than or equal tgp-a
[Daubechies, 2002]. Orthogonal wavelets that haypart 2-1 are known as Daubechies
wavelets (they are often referred to asxXdivavelets wherex is the number of vanishing
moment$®). The dbl wavelet is in fact the Haar wavelet. SEheavelets are designed so that
the high pass filter yields a response that islasecto zero as possible for the given time
support [Press et al, 1992]]. Having as many detzelfficients as close to zero as possible,
with signal energy concentrated in just a few doediits, makes a critically sampled wavelet
transform amenable to data reduction since thesfivam itself does not add any redundancy
to the data and a number of coefficients in thesfi@m domain can be removed with a

relatively small impact on the reconstructed data.

The Daubechies wavelets are not the only waveletis @ompact support but they are
popular since they offer a sparse representationamy commonly encountered functions for
low support. Two other varieties of compactly suppd wavelet developed by Daubechies
are symmlets and coiflets. Symmlets are designée tmore symmetrical in the time domain
by choosing roots of the polynomial in the frequedomain to have as close to linear phase
as possible. Coiflets are designed in a similahitas to Daubechies wavelets but are
designed to have a specified number of vanishingnemts for the scaling function as well as
the wavelet function. Their support ip-3 [Daubechies, 1992]. There are many other types
of filter for the orthogonal FWT. The interestedder is directed to [Misiti et al, 2000] or
[Mallat, 1999] for further information.

15 In this context in the literature the support siperesponds to the support width, so a suppoetai’
actually requires 4 non-zero filter coefficientsupport size of 4 requires 5 coefficients andrso o
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3.8.3 Splinewavelets

What follows is a brief overview of splines andigplwavelets. Much of this section is based
on [Unser, 1999] and [Unser et al, 1993] and fanare detailed treatment the reader is

referred to these.

Where an MRA is invertible but the resynthesisefﬁ;tﬁ[ n and go;[n] are not the time reverse
of h[nand g[n| then it is biorthogonal rather than orthogonaltia biorthogonal case the

two filters need not satisfy the power complemetytaondition (3.75). As for Gabor atoms,

relaxing the orthogonality requirement allows opsiation of the analysis or synthesis filters
for a particular task. For example, B-spline waiglean be used in a biorthogonal MRA,
either as the synthesis or the analysis functiattequgh it is not the case that splines offer
the only functions suitable for a biorthogonal MRA)B-spline curve through a set of points
consists of the linear combination of shifted Busplbasis curves of a given order (the order
of the B-spline). A zeroth order spline curve isnsioucted from a series of constant
functions at the height of each data point. A fostier spline curve is constructed from a
series of straight lines that join each data posecond order spline curve is constructed
from a series of quadratic functions that spanetlii@&a points and so on with each ‘piece’ of

the curve having its own weighting coefficient, mieg that a function can be described by:

f)=2 (RB"(x-K  (3.83)

kOz

where S™is the B-spline basis curve of order Figure 3.9 shows first order (linear) and

third order (cubic) spline approximations to a ey sampled sine function.
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Figure 3.9: Spline approximations to a coarselymachsine function.

The B-spline can be used as a piecewise approximéti an arbitrary function and such a
representation is useful since “each spline is ungnously characterised by its sequence of
B-spline coefficientsc(k), which has the convenient structure of a discef@al, even

though the underlying model is continuous” [UnskE399]. They are useful for this purpose

since they are locally simple but can be combireddscribe functions for which no other
underlying model can be found. The zeroth ordeplne is given by

]_, —E<X<}
1 1
B°(x) = > |>‘l:—2 (3.84)
0, elsewhere

which is similar to the continuous Haar waveletglér order B-splines can be derived from
the zeroth by convolution:

B () =A"(¥EB"(YO..08() (3.85)

m+1 times

An equivalent equation to (3.85) is:

" B 1 m+1 m+1 ‘ m+l m
yes (X)_WZ( . j(—l) (x— k+ ” j (3.86)

* k=0

where
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m moX2
()"=1*"*2% 387y [Unser, 1999]
0,x<0

The constant (zeroth order) B-spline basis leads oodel which is not continuous (since it
IS piecewise constant). The first order basis effecontinuous (piecewise linear) underlying
model but it is not smooth since the first derivatis not continuous. The second order
(quadratic) basis is continuous and smooth butrdate of change of curvature (second
derivative) changes in a piecewise constant fasfiiba third order (cubic) basis exhibits the
‘minimum curvature property” since the second daixe is continuous and so for many
applications the cubic B-spline is considered thestrappropriate underlying continuous

piecewise function.

As the order of the B-spline basis tends to infisb the wavelet function tends to a
modulated Gaussian function making such functiatesali for approximating the Morlet
wavelet using a fast algorithm. The error in apprating the Morlet wavelet with a cubic
B-spline is less than 3% and the product of itetemd frequency variance is within 2% of
the optimum limit imposed by the uncertainty prplei (3.24 and 3.25) [Unser et al, 1992].
Since the B-spline basis is not orthogonal dualirsgaand wavelet functions must be
determined for the invertibility of its wavelet tisform. These functions are known as the
dual spline functions, or D-splines. A biorthogonahvelet transform using B-spline
functions for analysis uses D-spline functionsdpnthesis andice versaThe low and high
pass filter coefficients for analysis and synthesith different types of spline wavelet are

given by:

h=(dd - Jd i [pn™  (3.88)

ol =(d 0, ) ((2)"d f ((2)" 871 dum (pn* (3:89)°
A =2((da 57t n)7) * (A BN ¢ (3.90)

ol =((d 9 6"t n)") * a0 ()" B19 @ r GOy

'8 This is corrected from equation (3.31) in [Unseale 1993]. As it appears in the paper it is irgistent with

equations (3.6) and (A.5). 83



where g, [n] is the unit impulse at sample ui[n] is the binomial kernel of ordérgiven by:

m+1

1
m+1 |, <
+

u'r=12"n

m+1

(3.92)

0, otherwise

and b™[n] is the discrete B-spline sampled from the contirsuniln order B-spline function at

the integers:
b =AT9|_ (3.93)

(x[n])TZ represents up-sampling by a factor of two by imnserof zeros and(x[n])12

represents down-sampling by a factor of two (detiong by removal of odd-numbered
samples. The filtergo[n and q[n are determined by the type of spline wavelet. Whieee

B-spline wavelet and scaling functions are requilege are the unit impulsemt0:
P =dqn=9 (3.94)

These filters for thé&th order D-spline filters are given by:

plrl =(F™14)"  (3.95)

di =T ((4) 57t BT )T @96

The Battle-Lemarie [Mallat, 1999] orthogonal splineferred to as O-spline) filters are given
by:

o =(F"10)2  (397)

an=(5r (@) 5oty 5rn) |° o
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A fourth set of B-spline filters can be used tocodédte the cardinal spline (or C-spline)

wavelet transform. The C-spline wavelet tends todimc functior(sm(x)j as the order of the
X

spline tends to infinity. The filters are given by:

pl=(0TH ™ (3.99)

dn = (BT (4)" @ 1 (2)" ™) ) @100)

12

A number of these solutions specify the inverderfildefined as:

()™ kh=2 h (3.101)
The inverse filter, where it exists, can be fourahf the inverse DFT of the following:

1

( X[ k] )inverse

Where X[K] is the DFT of the sequencgn] . Clearly whereX[K] =0 for anyk the inverse

does not exist. As has been intuitively expressetinear operator [such as a filter] cannot
raise the dead — it only recovers 0 from 0” [Stramg Nguyen, 1996]. Also, where it does
exist the inverse may not have a finite impulspoese (FIR), even if sequence from which
it derived is finite. As discussed earlier thisnist desirable since this leads to wavelet and
scaling filters without compact support. Howeveoyded the coefficients decay towards 0
as the distance from the middle coefficient of tifter increases then the infinite impulse

response (lIR) can be truncated to provide an H& fwhich is an approximation to it. The

approximation error is determined by the rate afageand the number of coefficients in the
truncated filter. It is also possible to use a adscof FIR and IIR filters to compute the

coefficients of filters without compact support. &b a filter does not have an inverse,

becauseX[Kk] =0 for somek, then the original input to the filter can be reeeed if the DFT

of the input contains no energy for these valuds of

3.84 Complex wavelet transforms
Complex wavelet transforms for real input data t&nimplemented by performing two
separate wavelet transforms on the same input sequ®ne transform represents the real

part of the complex transform and the other reprtssthe imaginary part. The relationshié)5



between filters for the real and imaginary partsesaccording to implementation. Often the

difference between the filters for each transfosnthat underlying wavelet and scaling

functions are shifted in phase By Alternatively the analytic version of the inpugrsal can
2

be found and the same filters applied to the real ianaginary parts of this signal. The
analytic version of a real signal is complex and ba found by setting the negative part of
the spectrum, which for a real signal is the commenjugate of the positive part of the

spectrum, to zero and multiplying the positive $peu by two to preserve the signal energy:

2F (w), w>0
Fanalytic(w) = F(w)1 w=0 (3103)
0, w<0

A complex FWT of a real input has 100% redundancg this redundancy can provide
approximate shift invariance. So called ‘dual tr@@velets have been developed to offer the
least shift variance within the FWT framework [Kslmry, 2001]. Shift (or translation)
invariance is a desirable property in time-frequyeand time-scale analysis. When a signal
representation is shift invariant shifts in theutpignal produce a corresponding shift in, but
not a modification of, the representation. The CWAd the STFT are shift-invariant
transforms but the sampling of the translation peter (decimation in time by a factor of
two for each lower octave) produces a shdriant representation in the FWT [Mallatt,
1999]. The mechanism of this shift invariance carviewed in either the time or frequency
domains. In terms of frequency, decimation prodwdées components within the analysis
sub bands since no compactly supported filter e Iperfect stop band rejection. In terms
of time, the wavelet coefficients will vary depenglion which samples are removed at each
decimation stage which is directly affected by plsition (the relative shift) of the input data
[Bradley, 2003]. Thus the relative size of the @ioednts in the wavelet domain will vary
with relative shift even though energy is preseraedoss scales in the orthogonal case.
These terms are cancelled at the reconstructiorthef signal (provided there iso
modificationto the data between analysis and synthesis) bytdte present in the data in the
wavelet domain. The design of the filters for thealdree complex wavelet transform
considers this problem in the frequency domain attedmpts to minimise aliasing within
each sub-band for a given FIR filter length ance@undancy of 100% [Kingsbury, 1999].
This approach to the design of complex wavelets ontrast with the previously discussed

approach of designing wavelet functions to be idaht(or as similar as possible) but
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separated in phase Y which assumes the same relationship between neialnsaginary
2

parts of the transform as for Fourier analysis.

3.85 Complex waveletsfor audio

The discussion of wavelets presented in this chdpés covered three separate types of
wavelet transform: the continuous, undecimated deadmated wavelet transforms. The last
two types are suitable for the computer analysisaadio. As discussed the real valued
decimated wavelet transform makes low demands omang requires relatively few
computations and can offer sparse representatiodata. However it does not describe the
time-frequency plane in terms of components withgghand so it is not ideal for inferring
descriptions of audio components. It is also srafiant meaning that numerical descriptions
of a component varies with the position of the comgnt in time. The undecimated wavelet
transform is more expensive in terms of computaiad memory since the length of the
filters grows exponentially at each decompositievel (although they effectively remain the
same length for the a trous implementation) andntiimaber of components at each level
remains the same since there is no decimation. kewie is shift invariant and it offers a
redundant representation of the data which makeanitattractive analysis tool. The
decimated complex wavelet transform comes somewhbetaveen the decimated and
undecimated real wavelet transforms in terms ofimedncy (100%), memory requirements
and computational cost. It has been pointed outlittie work has been published on the use
of complex wavelets for audio processing [Wolfe &wldsill, 2003] and it is certainly the
experience of this author that there is little pel#d work in this area. As the authors point

out:

One reason for the success of real-valued waviladate has been their tendency to provide a
sparse representation for many types of data-imbgesy a primary example. However aside
from a small number of papers over the last decaddio applications of wavelets have seen
relatively few major successes in comparison witiditional Fourier approaches ... [the
inherent redundancy of the dual-tree FWT] playola in ensuring that a complex wavelet
transform exhibits a degree of translation invas@ra key property for tasks involving some

degree of pattern recognition, such as auditorjufeaextraction. [Wolfe and Godsill, 2003]

However the claim thaho published work, regarding processing with compleavelets,
predates this paper overlooks work published in8188jarding the application of the ‘a

trous’ algorithm to audio analysis with complex whts [Kronland-Martinet, 1988] and
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perhaps more besidésChapter 5 of this thesis describes a complex leaamalysis system
based on the B-spline wavelets described in theigue section. The data from this
transform is then used to infer values for the ntage, centre frequency and bandwidth of

underlying components.

3.8.6 Initialisation of the discrete wavelet transform

The orthogonal and biorthogonal wavelet transforwier, by definition, perfect
reconstruction of the original time series. Usin@Mterminology the original time series is
considered to be the projection of an underlyingtiomous function onto the sub-spaége
The resolution of the subspace is determined byanepling periodr, (the reciprocal of the
sampling frequency). A3, - 0, nin V, - —o. For a given sampled time serigscannot

be made smaller and so the approximation at scaléaBen as being the time series:
a,({) =% (3.104)

Using (3.104) will allow analysis and perfect reswaction but it may not provide intuitive
analysis data since this is not the projectionhaf ainderlying continuous function on the

V,sub-space. For a sampled sequence the underlymblibgited continuous function can be

found by convolving the samples with a sinc funatio

f(t)= g(t)*%’"?) (3.105) [adapted from Smith, 2005] where:

_ [, t=nT,
9= {0, elsewher (3.106)

The sinc function, a sampled sequence and thegiiotion convolved with the sequence are

shown in the figures 3.10 and 3.11.

It may be that the authors are referring spedifid® dual-tree complex wavelets but this is napleitly
stated.
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Figure 3.11: Convolution of a sequence of pulsek @isinc function.

Since the result of convolution of a discrete sevigth the sinc function represents the ideal
underlying band-limited continuous function (whirchan audio processing context, would
be the continuous signal after the anti-aliasittgrfihas been applied) then projection of this

signal ontoV,is given by the convolution of the time series watlfilter (a in the equation

below). This filter is the inner product of the siilunction and the dual scaling function:

ao ({)=> %ha._, (3.107) where

a, :<sinc,¢;:oy_p> = I sinct fa(— p ¥t (3.108) [Abry and Flandrin, 1994].
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As discussed in the previous section the cardi@a) §pline tends to the sinc function as its
order tends to infinity. This similarity betweenlisps and the sinc function explains the
application of both in interpolation and sampleerabnversion. They are both smoothing
functions which vanish at all integers other thiaa d¢rigin. In fact compactly supported (‘B’)

splines are attractive in this regard since thégrohterpolation at low computational cost:

This is precisely why splines are so much more adatnally efficient than the traditional
sinc-based approach. Because sindecays Iikeﬁ computing a signal value at a particular

non-integer location with an error of less than [F%® dB] will require of the order of 100

operations in each direction, while B-splines pdevan exact computation with just a few non-

zero terms 1 +1 to be precise). [Unser, 1999].

This similarity between splines and the sinc fumttsuggests the use of the B-spline as the
initialisation filter when computing the waveleatisform with such functions. This gives the

V, projection as:

a,({n) = p B* [xIn  (3.109)

where p is the filter specific to the type of spline assalissed in section 3.8.3. At
reconstruction the final approximation coefficiemsst be convolved with the inverse filter
to obtain the original sampled sequence.

=i > a (3.110)

As stated in a previous section this initialisatimiter conditions the input data for analysis.
As an example an impulse in the original time sesigould produce the wavelet shape in the
detail sequences at increasing dilations for irsingadetail level. This is the case when the
initialisation has been performed but is often that case without it. In the same way if the
original time series consists of the shape of ti@etl wavelet at a given level then the
wavelet analysis should produce an impulse in #taildlevel corresponding to this dilation,
at other detail levels all of the coefficients skibbe zero. Again this is the case when the
initialisation is performed but without it energyaynbe spread into other detail levels. In

chapter 5 the importance of proper initialisationdstimating frequency is discussed.
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3.8.7 Thefrequency-splitting trick and wavelet packets

The decimated wavelet transform described in secB@®.2 uses a recursive ‘filter and
decimate by two’ algorithm to find the detail coeiints at all scales as well as the
approximation coefficients at the highest scalei¢iwhis dependent upon the number of
decomposition levels in the analysis). Firstly thiscrete signal itself (or the initialised
wavelet sequence) is high and low pass filterelitfiag it into two bands with the output of
each filter decimated. The high frequency band aostthe signal details at the first scale
and the low frequency band contains the signala@mations at this decomposition level.
Next the approximation coefficients are split ibEnds using the same filters and decimated
giving the details and approximations at this dggosition level. Then the approximations at
this decomposition level are split and decimatedgiee the two bands at the next

decomposition level and so on.

In the process just described it is the lowest baurtdof the two that is split each time and,
since the output of the filters is decimated by ,tlee number of coefficients at each
decomposition level is halved. The splitting of tberest band at each decomposition level is
what yields the ‘constant-Q’ property of wavelealysis. This is often a desirable property.

However, it need not be the lowest band that i$. fimilar to (3.71) we also have:
W=V OW (3.111)

which implies that the highest band may also bi. dplfact both bands may be split at each
decomposition level to give what is known as th# binary tree [Mallat, 1999]. For

orthonormal filters any route from the bottom oé tinee to the end of one of the branches,
for any given level of decomposition, forms an ortbrmal basis and so the entire tree forms
a library of bases, known as wavelet packets, witich a signal can be analysed. Wavelet
packets have been described as “particular lineabmations or superpositions of wavelets”
[Wickerhauser, 1994]. If the full binary tree isdum then the ‘best basis’ for describing a
signal with a particular wavelet can be derivedriris tree by assigning a cost function to

each route from the base to the top of the treeekample a cost functiorG, ., used for

denoising of audio signals is the Shannon secoder @ntropy:
N
Cbasis = _Z ai Iogz ai (3112)
n=1
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where a_ is the series of coefficients for the basis atagisvhich comprise the signal:
N
ft)=> aw() (3.113) [Berger et al, 1994].
=1

The cost function attempts to identify the sparsegtesentation of the signal offered by the
basis library with a small number of large coeéitis (that are assumed to represent the
coherent part of the signal). These are complerddnea large number of small coefficients
that are assumed to represent the unwanted, naisyfthe signal which can be reduced in
level (soft thresholding) or set to zero (hard shi@ding) to reduce the level of this ‘assumed
noise’ component of the re-synthesized signal. Sho¥sholding can be carried out on data
derived from fixed rather than best bases suchaSTFT or the decimated or undecimated
wavelet transforms. The band splitting techniqugDafubechies, 1992] that leads to the full
binary tree is used to estimate the spectral wadthound components in chapter 5 of this

thesis.

3.9 Time-frequency energy distributions

So far atomic decompositions of signals, speciffcéime series, have been considered.
These attempt to describe how a one dimensioni@ssapectral content changes over time
by finding the inner product of the time serieshnatoms of differing frequencies (or scales)
and with differing shifts in time. The exceptionttos is the DFT which does not shift atoms

and so provides frequency, rather than time-frequeanalysis of time series.

A second type of time-frequency analysis methodnapts to describe how the energy in a
signal varies as two variables, time and frequemayy [Auger et al, 1994]. The first such
distribution to be described was the Wigner-Vilistdbution (WVD). This is defined as:

wvo, = | f(t+£j f*(t—%je'j“"dr (3.114) or

—00

wvQ,, = j F(w—gj F (w%)e‘i‘* % (3.115)
where f (t)and F(w)are the signal and its spectrum respectively [Coh884]. The WVD

is similar to the Fourier transform of the autoetation function, where the autocorrelation

is given by:
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A(t):]o f*(r) f(r+tdr  (3.116) [Cohen, 1994]

It is classified as a bi-linear (or quadratic, ggased to linear) distribution because the
signal appears twice in the integral, albeit afedént points in time (or frequency). This
aspect of the distribution, the product of the algat two different points (except when,
#=0), imparts two important properties of the disttibn, one desirable the other
undesirable: good time-frequency resolution congbare the STFT and the presence of
cross, or interference terms. The first propertiersf high resolution of mono-component
signals, at any time instant the conditional meaguency of the WVD (over all frequencies)
is equal to the first derivative of the phase of #ignal which gives the instantaneous
frequency®. Also, at any frequency the conditional mean fexgpy of the WVD (over all
time) is equal to the group delay of the signalttat frequency [Qian, 2002]. The
interference terms appear in the WVD when theraase than one sinusoidal component in
the signal, they are a direct result of the quadrature of the distribution. Considering a

two component signal:

fO)=u®+v(®  (3.117)

wv,( f(1) = ]o f(t+£j f*(t—éje‘im’di

—00

_ 1[u£t+%)+v(t+%)j[u* (t—lzj+ v (t-lzjje-ifwov (3.118)

=WVvD,, (W) +WVD, (¢ 1)+ WVD,( @t @)+ WVR( (.t Q)

where:

wvD,, (WD, (9) = T { t+£j\*/( t—%je‘i““ ¢ (3.119) and

—00

_oo r)= U -iw
WVD’W(\(t),L(I))—I \{t+§ju( t——zje’ d (3.120)

—00

8 The conditional mean of a signal or function i® tmean under a given condition. In this context the
conditional mean frequency is the mean frequenay gitven instant in time and the conditional maaretis
the mean time at a given frequency. 93



are the cross-Wigner distributions of the two sign@he cross-Wigner distribution can be
complex but (117) and (118) are equal to the catpgyof each other and so are both real.
This gives, from (116):

wv,,( f(9) = WvD,, (€ ))+ WVB,( ¢))+20( WVR,( Wt V) (3.121)

To differentiate it from the cross-Wigner distrilaut the single signal distribution described
in (3.114) and (3.115) is sometimes termed the-8gmer distribution. Since the auto-
Wigner distribution and its conjugate are also étjua auto-Wigner distribution is real. This
is an important difference between this analysithogk and the STFT since it implies that it

contains no phase information.

For a dual component signal, where each composeatsinusoid of a fixed frequency and
each component has equal amplitude, the two auttsteill appear in the WVD with equal
amplitude and at the respective frequencies ofsthasoids. The cross term will appear
midway between the two auto terms in frequency aitld twice the amplitude. It will also
exhibit bipolar oscillation at a rate proportiomalthe distance between the two auto terms. It
is clear that if the signal contains a third comganwhich occurs at this same midpoint
frequency then it will be obscured by the behavioluthe cross term. This is in addition to
the fact that a third component will generate eweore cross terms. The presence of
oscillating cross terms which have zero averageggnean also cause the distribution to be
negative in places which is counterintuitive sincegative energy does not have a

straightforward physical manifestation. ConsideriaggeneralN-component signal the

number of cross terms will b@z_N%which, for N >3, will generate more cross terms in
the distribution than auto terms [Qian, 2002]. Diesthe fact that they can be reduced by
applying the WVD to the analytic signal, since thigids all cross terms associated with
negative frequencies, the abundance and magnitiitleese oscillating interference terms
makes the useful application of the WVD to the gsial of multi-component signals very
limited. This has led to the development of the sthed WVD (SWVD) which applies low
pass filtering to the distribution in both the tirswed frequency directions:

swvp, ( f())=jj¢;x,yquzwy( {)) dxd (3.122)

—00 —00
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where:g, =™ a >0 (3.123)[Qian, p.163]

Since the parameterg and Scontrol the spreading of the Gaussian function athe
direction, the amount of smoothing can be contdliBince the cross terms oscillate and
have zero average energy the low pass filteringrednce the magnitude of these terms.
However this filtering also reduces the resolutadnthe wanted auto terms, with sudden
changes of amplitude in time and frequency alsondesmoothed. Whenaf >1the
distribution can no longer be negative at any paind whenaf =1then the SWVD is
identical to the square of the STFT [Qian, 2002je Bquare of the STFT is known as the
spectrogram and this is also an energy distribusione the energy of a signal is either the
square of its magnitude in the time or frequencyaaos. As for the WVD, the spectrogram
is real valued and so has no phase (although taseptpectrum associated with the Fourier
spectrum from which it is derived can be known)efHfore the spectrogram is a smoothed
WVD. In fact “all time frequency representations¢ee obtained from:

1 ®

_ T e _r r < j(@+Te-6u)
Ct""_ﬁ_fl_[,f (u 2)f(u+ zjqa(e,r)ej dud @ (3.124)

00

where ¢(6,7) is a two dimensional function called the kernel [which] determines the

distribution and its properties” [Cohen, 1994]. FHoe WVD this kernel is 1. For the STFT it

is:

J'h*(u—zjh( u+£j &% dy (3.125)
. 2 2

There are numerous kernels which have been spkcifibich offer time-frequency
distributions with different properties such as @igoi-Williams, Zhao-Atlas-Marks (‘cone’)
and modal distributions [Cohen, 1994]. The formspreaed in (122) is known as ‘Cohen’s
class’ of time frequency distributions. Examples mfisical applications of distributions

derived from this class can be found in [Pielemeteaal, 1996].

Practicable computation of the discrete time WVRBQuiees the using of a finite-length time

domain window, as for the STFT and referred to)fs] in the following equation, to

remove the need for an infinite summation. The afsguch a finite length window reduces
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the frequency resolution, but not the time resohytigiving what is referred to as the pseudo
WVD (PWVD) which is given by:

PWVD,, (% 1) =2 i M hxr Mmx m]e’?™ (3.126) [Qian, 2002]

m=-oc

The multiplication by two in the power term of tkegponential is introduced to avoi%
terms in the bilinear part of the equation. Thikesathe period of the distributionFgrather

than 27Fgso if the bandwidth of the signal is greater th%ﬁthen aliasing will occur. This

means that for a signal sampled near to the Ny¢jmgtthe sample rate needs to be doubled
which can be done by inserting zeros between egisamples and performing interpolation

filtering. If the window is real and symmetric aiichas length2L -1 and u[n] is the real

valuedx[ n| up-sampled by a factor of two then the discreeuge WVD (DPWVD) is given
by:

2L-1 . 47kn

DPWVDW(*ﬂl):4D{Z;)y[ mi@ = M2 n ]re”ZL}—z;fO]([aJ])q2 (3.127)

[Qian, 2002].

In this form the DPWVD can be calculated using B . Initial work undertaken for this
thesis investigated whether the autocorrelatiorenaht in the WVD could be used, when
compared with the spectrogram, to determine thessidality of the component [Wells and
Murphy, 2002]. Whilst promising results were ob&rthe smoothing required made such an
approach unsuitable to real-time operation andai$ wubsequently abandoned in favour of

the methods described in the following chapter.
3.10 Estimating the instantaneous frequency of signal components

Instantaneous frequency is one of the most inwlitiwncepts, since we are surrounded by light
of changing colour, by sounds of varying pitch, aoyl many other phenomena whose

periodicity changes. The exact mathematical deseripand understanding of the concept of
changing frequency is far from obvious and it ig fa say that it is not a settled question.

[Cohen, 1994]
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As already stated there is little musical valuaideterministic or stochastic process that is
completely stationary throughout a sound, or agicmusic. If the parameters of a sound
production process change over time then thosemmdess will be different at different
instants. As has been discussed, there are no saafyethods that are capable of
simultaneously giving arbitrary resolution in tiraed frequency. This means that, aside from
the continuous WVD for a single component signak instantaneous frequency of a
component cannot be precisely known from the outpany one of the algorithms discussed
thus far. For example an FFT of a 1024 sample seglesampled at 44.1 kHz, has 513
useful analysis bins spanning the frequency rarga 0 Hz to 22.05 kHz. This means that if
there is a peak in a bin due to a stationary sidusioe frequency of that component lies in a
range covering 43 Hz. In order to reduce this rdgier analysis is required. An example
of a method for estimating the frequency of a samlel component from STFT data was
discussed in section 3.6. This section outlinesesadditional methods. For discrete analysis,
if the spectrum is sampled at every sample (i hibp size is one), then an estimate for the
instantaneous frequency is provided for each sanvgleere the hop size is greater than one
then instantaneous frequency for intermediate sasnplust be interpolated, either using the
nearest estimates on either side of the currenpleaon a method such as PDA (discussed in
section 3.6.5).

Two approaches to estimating the frequency of siigsusing magnitude data are those of
parabolic and triangular interpolation. These miyknowledge of the magnitude spectrum of
the window at and around the peak bin to deterrthieeprecise location of a spectral peak
between bins. Parabolic interpolation takes adggntd the fact that the magnitude response
of most analysis windows when expressed in decibattose in shape to that of a parabola.
The following equation is used to obtain a frequyeestimate using this method. Figure 3.12

illustrates this.

1 M_,-M
a)sinusoid = B[ n+- = e j (3128)
2 Mn—l_ZMn+Mn+1

WhereB is the bin width in radians) is the peak bin an¥ is the magnitude of a bin

expressed in dB.
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Figure 3.12: Parabolic interpolation.

Using an example DFT of 1024 frames, 44.1 kHz atthan window to analyse a 1 kHz
sinusoid an estimate of 1000.6 kHz is obtained witis method. The accuracy can be
improved by zero-padding the DFT and by using aigllg designed window whose time
domain function is the inverse transform of a fimtiwhose main lobe shape is as close as
possible to that of a parabola (however this mayeeskly affect other aspects of window
performance such as main and side lobe propertigshe ability of overlapping windows to

sumto 1).

The triangle algorithm is named after the shapthefmain lobe of the window function in

the frequency domain, although this is when thedewm is plotted with a linear rather than

logarithmic magnitude scale. After a peak has hdentified, two straight lines are drawn

through the bin magnitudes and the frequency estinsataken as the point at which these
two lines (which form the two opposing slopes o thiangle) intersect. The slope of the
lines is determined by calculating the best fithwthe least squared error [Keiler and
Marchand, 2002].

Another method which uses DFT magnitudes is thivakere algorithm [Desainte-Catherine
and Marchand, 2000]. However this requires the adatpn of two DFTs for frequency
estimation — one DFT is of the sampled signal,oaghe other methods discussed so far, the
second is of the derivative of the signal. Forragad signal the closest approximation to the

derivative of the signal is the first order diffece:
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yin=FR(fd-knmdl) (3.129)

where x[n]is the sampled signal ang[n] is the approximation of the derivative. A

preliminary estimate of the frequency is then aisdifrom:

AM

peak

p:M

(3.130)

peak

where AM is the magnitude of the DFT of the difference datdM is the magnitude of the
DFT of the original sampled data. Equation (3.129)effectively a high pass filtering
operation whose frequency dependent gain can lelatdd. In order to match the gain of
this filter to that of first order differentiatioof the continuous signal the following scaling

operation must be performed in order to obtaimaoroved estimate of the frequency .

F . P
f =| -2 |arcsin — 3.131
peak ( ﬂj ”'{ 2FSJ ( )

This method takes account of phase (even thouglphlse from both DFTs is not used)

since the difference data actually forms an oveilagpframe with the original data:

Data set for singleframeof DFT: X[0]................. X[n-1]

Next frame: x[n].............. X[2n-1]

Data set for single frame of difference DFT is calculated from: x[-1]......... X[n-1]
Next frame x[n-1]............ X[2n-1]

In fact, considering the time-shifting propertytbe DFT, this method is equivalent to the
phase difference method described in section 38 & hop size (distance between
successive analysis frames) dHainsworth and Macleod, 2003]. If the derivativetimod is

employed with a hop size greater than 1 the mestantaneous frequency is not evenly
sampled since it is measured between two adjaeemplses. For the phase difference method
the frequency estimate is averaged over the hdardis from one frame to the next giving a

frequency estimate across the whole length of atysis hop.

One final method discussed here for estimatiohas of frequency reassignment [Auger and

Flandrin, 1995]. The general method of reassignmastwell as estimating frequency
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deviations from the centre of analysis bins, cao dle applied to the position in time of
spectral data. Time reassignment provides estinwdtdsviations from the centre of analysis
frames. Reassignment frees the time-frequency septation from the grid structure
imposed by the frame length and the hop size ofSRET. Once an analysis window has
been chosen, two further windows are calculatedhe that is ramped in the frequency
domain (for frequency reassignment) and one thenged in time (for time reassignment).
The frequency domain window can be calculated enttine domain by calculating the first
order difference of the original window (as we do the actual signal with the derivative
method discussed previously). A 1024 point Hanndew and its time and frequency
ramped versions are shown in figure 3.13.
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Figure 3.13: Hann window (left), its time rampedsien (middle) and its frequency ramped version
(right).

The estimate of frequency deviation (in radiansjrfrthe centre of an analysis bin is given
by:

DFT.

standard window

DFT, -

whereB is the bin width (in radians) afaF T represents the complex value obtained for that
bin by the DFT. The estimate of time deviation ggtonds) from the centre of an analysis
frame is given by:

1 DI:Time ramped window
_FD{ fime ramped wind } (3.133)

DFT

standard window

100



whereFs is the sample rate of the signal.

A recent study has demonstrated that equivalenplitude’ reassignment (subsequently
referred to here as magnitude reassignment foristensy) can be used in place of the
‘phase’ reassignment where the frequency deviaiwh time deviation estimates are given

by, respectively:

* _[DFT, .
_B[%TJ D{ DFiFwerampedwmdow} (3134)

standard window

a7 DFT.

standard window

F DFTre uency ramped windo
s D{ frequency ramped ‘”} (3.135)

These two estimates will only be identical for tbentinuous STFT where a Gaussian
window is used. For other window types noisy congmis will give rise to different
estimates implying that comparison of the two sétestimates may be useful in sinusoidal
discrimination [Hainsworth and Macleod, 2003b]. §hs investigated in the following

chapter where novel methods for deriving estimdms AAand Af and determining

sinusoidality from reassignment data are described.

3.11 Amplitude correction

In section 3.6.5 it was seen how the window shapéhe frequency domain affects the
magnitude of the measured DFT spectrum for bottiosi@y and non-stationary sinusoids
and how this magnitude varies with distance from ¢entre of an analysis bin (see figure
3.5). This means that amplitude estimates for théetlying sinusoidal function will be
incorrect unless the frequency of the sinusoidtisha centre of the bin from which the
magnitude is measured. Knowledge of the window shaphe frequency domain and the
deviation from the bin centre can be used to coties error. It is straightforward to extend
the parabolic interpolation discussed earlier taregte the position of the parabolic peak on

the magnitude as well as the frequency axis bythmtion

E (Ml_Ms)Z
8(M;—-2M,+M,)

Amginusoid = NIZ - (3136)
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This gives the amplitude of the sinusoid in dB tie&ato the amplitude of the peak bin.
Alternatively, rather than taking the main lobe@®has being a parabola when its magnitude
response is expressed in dB the power spectrutmeofvindow can be calculated, by (3.29)
or (3.31) for example and the amplitude can beecbed from this. However, a drawback of
both of these methods is that they assume thatsitmesoid is stationary. Amplitude

estimation for non-stationary sinusoids is congden chapter 4.

3.12 Summary

A wide range of sound analysis and modelling temives have been surveyed as preparation
for the following three chapters which describe elovork undertaken for this thesis. These
chapters focus on sinusoidal identification andcdpson using reassignment data, complex
wavelet analysis and the development of a real-8pextral modelling system respectively.
Whilst the coverage of the existing literature baen broad and extensive it is by no means
exhaustive and represents a small fraction of &lthe published work into analysis,
processing and modelling of audio signals. For nimie@mation on the ideas and techniques
presented in this chapter the reader is directédet@eferences given herein and listed in full
at the end of the thesis.
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4 REAL-TIME IDENTIFICATION AND DESCRIPTION OF
STATIONARY AND NON-STATIONARY SINUSOIDS
4.1 Introduction

The spectral model adopted in this thesis diststyes between stable sinusoids and other
types of signal component. A stable sinusoid isneef here as a signal component that can
be synthesized with minimal error using a singteusoidal function with stationary or non-
stationary amplitude (monotonic exponential) aneljérency (monotonic linear) over the
duration of at least one analysis frame. The amdtygnsformation/synthesis algorithms that
this thesis proposes are designed to be used &fimeaprocesses. As a result of the
uncertainty principle more than one sample of aaignust be acquired before a useful
frequency analysis can be carried out (the DFT sihgle sample is identical to the sample
itself). There will therefore be latency betweea thput and output of such a system, giving
a delayed output in a causal systemin such a situation real-time clearly cannot mea
instantaneous. Definitions of real-time vary in literature but the definition adopted for this
thesis is:

1. Quasi instantaneous: as close to instantaneous adlowed by the frame size
(window length) of the analysis algorithm.

2. Frame by frame: this is implied by the previousdiban. Only the current and/or

previous frames may be used in the model. Waitndifture frames is not possible.

3. Real-time execution: the execution time of the atgm must be shorter than the
time taken to replay the data it analyses or predu@/here there is redundancy in the
analysis (e.g. due to the use of frame overlappihig) will increase the execution
time but the real-time execution limit must notébeeeded.

This chapter describes the development and evafuaif an algorithm for identifying

sinusoids (i.e. discriminating between sinusoids @on-sinusoids according to the definition
given above) and describing them (i.e. deriving plagameters that can be used for their
accurate resynthesis). Since no prior knowledg¢hefthe spectrum is assumed and the

system is intended to identify and describe indigidsinusoidal components Fourier analysis

! As discussed in chapter 2 a DAW system can be aseamti-causal on playback of data that it hasaly
acquired. In fact many DAW systems compensate focgssing delays by ‘looking ahead’ of the audiat ik
currently being played back to give the impressibmstantaneous processing.
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is used since it provides uniform sampling of fregey. The constant-Q approach, such as
that discussed in section 3.7, does not provide timiform sampling. Also, in order to
provide the same number of divisions of the fregyeaxis, a much longer window length is
required at the lowest frequency to accomodategdmmetric spacing of those divisions.

This mitigates against its use in a quasi real-system.

4.2 Overview of sinusoidal identification

As seen in section 3.5.3 the DFT of a windowediataty sinusoid is the DFT of the

window function shifted from the zeroth analysis bd the bin within which the sinusoid

resides. Windows commonly used with the DFT forcs@d analysis are characterised by a
peak in the magnitude spectrum at the zeroth buitfil, 1981] and so a stationary sinusoid
will be characterised by this peak but shiftedeqtiency. This is illustrated by figure 4.1
which shows the magnitude spectrum for a statiosanysoid at 1 kHz at 44.1 kHz (all

following examples assume this sample rate). Shiomthe figure 4.2 is the spectrum for a
highly non-stationary sinusoid demonstrating thdtjlst the spectrum is not the same, it is
still characterised by a peak, albeit in a différeim. For all figures in this chapter, unless
otherwise stated, the frame length is 1025 samptes-padded to 8192 samples for FFT
analysis.
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Figure 4.1: DFT magnitude of a stationary 1000 kkdmn windowed sinusoid.

This suggests that the search for sinusoids shbefn with the identification of local
maxima in the magnitude spectrum. The simplestnd&fn of a local maximum is a bin
which has a higher magnitude than either of its tweaghbours. Since the phase of a
stationary sinusoid is constant across the maie fob odd length zero-phase windows an

alternative could be to search the phase spectouraréas of flat phase. However for non-
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stationary sinusoids the phase is not constantsadite main lobe so this is not a reliable
method. Also, where the amplitude is, or is clagestationary the position of the peak in the
magnitude spectrum will indicate the centre ofrdaege within which the actual frequency of

the sinusoid lies. The sinusoidal components thatsaarched for in this model are of the
form:

sinusoid:A()sirU: 2t z(dr+¢)) 4.1)

where A(t)and f (t)are linear and exponential functions respectival/jn [Masri, 1996].
An exponential function in this context is definad f(x) =ab‘and a linear function as
f(X) =cx+ d wherea, b, c, anddR are constants. The difference between the lowekt an
highest value ofA(t)in a single frame is denotedA and its meanA. Likewise the
difference and mean of (t) are denoted\f and f . It can be seen from (4.1) that whet)

IS not constant, or close to constant, the avem@ageegntre, value off (t) will not reside in the

peak bin of the magnitude spectrum siri@) is not symmetrical. This can be seen in figure
4.2.

Magnitude relative to peak (dB)

6 I I I I I I I I I
200 600 700 800 900 1000 1100 1200 1300 1400 1500
Frequency (Hz)

Figure 4.2: DFT magnitude of a non-stationary Havindowed sinusoid. The amplitude of the

sinusoid increases exponentially by 96 dB durirg fitame. The frequency increases linearly from
750 to 1250 Hz.

Clearly the centre value of (t) cannot be assumed to lie within the bin of the nitadge

peak. Therefore in order to estimate this centlaevé@oth AAand Af must be estimated

first. However the amplitude weighted mean frequenf;‘mp (i,e. that obtained by
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reassignment or other method) for a component ghikeilwithin the range of frequencies
covered by the (non zero-padded) analysis bin. éxample in figure 4.2 the frequency
estimate obtained by reassignment in the peak$h1i472 kHz and the frequency range
covered by this bin is 1.1197 kHz to 1.1628 kHzisTls consistent with a sinusoidal

component whereas if,__lay outside of this range this suggests bin conation by an

amp
outlying component and the component should beidered non-sinusoidal and rejected
[Desainte-Catherine and Marchand, 2000]. Odg® and Af have been found and the

centre frequency has been found it is possibler¢alipt in which bin the magnitude peak

would reside for a sinusoid with these parametétke predicted peak bin is not the same as
the actual peak bin then this in an indication thatcomponent is not sinusoidal. In addition
to this indicator the behaviour of the time reassignt values around the peak can be
analysed to determine whether they are the sanpeedscted for a sinusoid with the given

analysis parameters. A method for doing this igppsed in this chapter. The comparison of
phase and amplitude reassignment for the sinusdidatimination is also assessed for non-

stationary sinusoids.

Just as Flandrin (cited in section 3.5.3) descrgiasonarity in terms of non-stationarity so
here it is proposed that peaks due to sinusoidsderdified in a frame by the rejection of
other peaks due to non-sinusoids. This is achidwecdestimating the parameters of the
sinusoid and then determining whether the behasiotithe peak match those predicted for

such a sinusoid. Once non-sinusoidal peaks haveregected all other peaks are assumed to

be sinusoids. The reassignment method is usedtupe the estimate @mp(i.e. that which
does not yet takeAAand Af into account). This is because reassignment cadupeo
estimates off_ampfrom a single frame whereas the phase differendedanivative algorithms

require more than a single frame of data. The mdiamterpolation and triangle methods
have not been used since these have been showto marform as well for stationary

sinusoids as these three methods [Keiler and Mad;H2002]. Also these two methods do
not discriminate against bin contaminants sincey tteke no account of phase. Since
reassignment analysis is used the phase distatialysis (PDA) technique [Masri, 1996] is

adapted for this form of analysis in this thesis.
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4.3 Reassignment distortion analysis

Phase distortion analysis uses phase deviatioherestde of magnitude peaks in the DFT
spectrum ((3.43) and (3.44)). For frequency andetirmassignment these deviations are
embedded in the frequency and time offset estimegepectively ((3.132) and (3.133)).
Figures 4.3 to 4.8 show the phase and frequencyimedreassignments across the main lobe
for both a stationary sinusoid and for a non-stetryg sinusoid. It can be seen that non-
stationarity produces perturbations of phase aadsignment measures in and around the
main lobe. Both time and frequency reassignmentieglexhibit similar perturbations to
these as well. Time reassignment is also a measu®A since it analyses the energy
distribution in time; an increase in amplitude dgra frame shifts energy towards the end of

the frame, a decrease shifts it towards the start.
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Figure 4.3: DFT phase of a stationary Hann windosiadsoid.
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Figure 4.4: DFT phase of a non-stationary Hann waivmed sinusoid. The amplitude of the sinusoid
increases exponentially by 6 dB during the framige Trequency increases linearly from 995 Hz to
1005 Hz.
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Figure 4.5: Frequency reassigned DFT of a statioHann windowed sinusoid.
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Figure 4.6: Frequency reassigned DFT of a nonestaty Hann windowed sinusoid. The amplitude
of the sinusoid increases exponentially by 6 dBrduthe frame. The frequency increases linearly
from 995 Hz to 1005 H
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Figure 4.7: Time reassigned DFT of a stationaryrHamdowed sinusoic
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Figure 4.8: Time reassigned DFT of a non-statiot#agn windowed sinusoid. The amplitude of the
sinusoid increases exponentially by 6 dB during flaene. The frequency increases linearly from
995 Hz to 1005 Hz.

Figures 4.9 to 4.11 show how the time reassignrofeéts close to the centre of the peak
behave for various values and combinationg\éf and Af . PDA is based on the fact that
there is a relationship betwedd and the difference in phase across the peak atdhére

is a relationship betweenAAand the combined differences between the peak prabé¢he
phases either side (as described by equationsahd33.44). RDA is also based on these
relationships (with regard to time reassignmengediffnstead of phase) but with measures for

AA and Af exchanged. PDA effectively models the phase astadider polynomial:

y=mx+c (4.2)

wherey represents the phase valuehe bin numbenn the value from whichAf is derived
andc the value from whichAAis derived. This thesis proposes modelling timssegment
data as a second order polynomial and using ‘gasdrd fit across the main lobe as a
measure of non-sinusoidality. The benefits of sdc@s opposed to first, order polynomial

are explained later in this section.
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4.3.1 Estimating AA and Af from RDA data

Just as with PDA, RDA does provide correspondinigesthat are unique for all values of
AA although this is not the case faf . Figure 4.12 shows the RDA measuarén (4.2), for
different values ofAAwhen using the Hann window. It should be noted thatrelationship

betweenAA andc, although linear for relatively small values |de4 is non-linear across

the whole range of values of amplitude change ¢batd occur in a 16 bit (96 dB SNR) or
higher system. Much work that uses PDA estimateAfAfassumes that this relationship is
linear [Masri, 1996], [Lagrange et al, 2002].

Figure 4.13 shows the RDA measungin (4.2), for different values off . It can be clearly

seen that there is not a unique relationship betwkeese two quantities. As with PDA the
relationship betweem and Af depends on the size of the window used. Extendiegesults

presented here to arbitrary sample rates and ffangths is discussed in section 4.8. As for
PDA, the exact relationships shown in figures 4ah® 4.13 vary according to the window
chosen. Also for small values @ff and AA, m andc are largely independent of each other
but this is not the case for larger values. Figyrdgl and 4.15 show how the relationships

shown in figures 4.12 and 4.13 are dependent ugolm ether.

Although in the presence of no amplitude changeréationship betweemMA and c is

smooth this is not the case when there is alsoaagehin frequency. Likewise, but more
markedly, the relationship betweé and m is not smooth where there is amplitude ahang
As figure 4.16 shows the effect of a large ampbtetiange (100 dB) upon this relationship is
dramatic and this effect is frequency related. Tdas be ameliorated by fitting the straight
line to data more closely localised to the peak by increasing the zero-padding factor) or

by increasing the order of the polynomial.
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Figure 4.12: RDA measure, c in (2), against theoagntial change in amplitude for a single Hann
windowed sinusoid. The frequency is stationary kH%.
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Figure 4.13: RDA measure, m in (4.2), against thedr change in frequency for a single Hann
windowed sinusoid. The mean frequency for each oreasent is 10 kHz. The amplitude is
stationary
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Figure 4.17: Relationship between RDA measure, if2jrand Af for a 100 dB exponential change in

amplitude for a single Hann windowed sinusoid &eguency of 10 kHz. The window length is 1025
samples, the zero-phase DFT size is 16,384 sanffup}, 32,768 samples (middle) and 65,536
samples (bottom).

Figure 4.17 shows the effect of increasing the -pamding factor. This improvement

suggests a relationship betwemn Af and the distance of_ampfrom the centre of the peak

bin. Such an improvement comes at a significant. ddssuming that the FFT calculation
speed is directly related to the number of comphedtiplications flog(n) for a radix-2 FFT
[Lynn and Fuerst, 1994] then increasing the sipenfl8192 to 16384 samples more than
doubles the computational cost and increasingpinfB192 to 65,536 samples increases the
cost by a factor of almost 10. For a real-time psscthese increases in cost are likely to be
prohibitively high for many applications and platfts. For this reason, and because a zero-
padding factor of 8 is commonly encountered in therent literature [Masri, 1996]
[Lagrange et al, 2002], this is the factor usethampresentation of results in this chapter. For
certain applications, and as faster processindagdr memory becomes available, it may be
that a higher zero-padding factor is desirable. d@t@rable smoothing can be achieved by

modelling the data with a second, rather than, foster polynomial:
y=pX+mx ¢ (4.3)

The smoothing effect of this is shown in figure 8 4nd it can be seen that it provides a
much smoother relationship betweem and Af than that obtained when using a zero-
padding factor of 64. This is at the cost of a $enabnge of values ofAf over whichm is
monotonically increasing. Modelling with a seconder polynomial has a negligible effect

on the relationship betweenand AA but, as can be seen from comparing figures 4.45 an
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4.19, that betweem and Af is considerably smoother reducing frequency depaneieors

in the estimation of frequency change in the preserf amplitude change.
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amplitude for a single Hann windowed sinust

4.3.2 Interdependenceof AA and Af estimates

The magnitude ofAf has some effect on the relationship betweekand c with a 21%
increase in the size affor an amplitude change of 90 dB whah changes from 0 to 1000
Hz. However the effect of changes &A on the relationship betweefif and m is much

greater. For a change in amplitude of 90 @Bs 71 % lower than it is for no amplitude
change with a frequency change of 250 Hz. Thiscateis that if a sound model is to

incorporate sinusoids that rapidly change in bodgdency and amplitude within a single
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frame then the assumption thatand m are largely immune to changes iff and

AArespectively is no longer valid.

Proposed here is a new iterative method which twesdimensional (2D) array lookup to

produce much more accurate estimates of dthnd AAin situations where the magnitudes

of both are high. This gives improved estimatesth&se two quantities over those obtained
when the distortion analysis measures are assumieel independent of each other (as is the
case for all applications of PDA to date). The t@lD arrays that are used contain data
generated by synthesizing sinusoids for differemblginations of different values oAA and

Af . Modestly sized (100 by 100 element) arrays aredusince, with second order

polynomial modelling, the functions are relativedgnooth. Linear interpolation is used to
extrapolate between elements. The range of vat@s-i96 dB forAA and 0 — 260 HZf .

The range forAf is chosen approximately to be range where, foreimsing|Af |, |m is also

increasing. The range foAA is chosen as the largest range of amplitudes daat be
represented in a 16 bit system.

The steps of the iterative algorithm are as follows

1. EstimateAA from the amplitude change array assuming tfais 0 Hz since

changes inAf have a smaller effect anthan those iMMA have orm.

2. EstimateAf from the frequency change array assuming thatis the value

derived in the previous step.

3. EstimateAA from the amplitude change array assuming thfatis the value

derived in the previous step.
4. Repeat steps 2 and 3 until the algorithm is tertecha

The termination point may be determined by the @semg power available (particularly in a
real-time context), the required accuracy of es®ar the number of iterations before the

final estimates ofAA and Af are no longer improved by repeated steps but degnscillate
either side of their correct values. Figure 4.20veh the relationship betweefdf and its
estimated valueif .. for different values ofAA assuming thahA=0 This figure clearly

illustrates the adverse impact that amplitude chamgs upon frequency change estimates
116



using this one dimensional interpolation technighie.Af increases the estimates begin to
‘undershoot’ whereAA is non-zero due to the estimation process nohgpiccount of how
amplitude changes reduce the height of the curviegure 4.19. Figure 4.21 shows the
results obtained when one dimensional interpolaisonsed to estimat&A and then this
estimate is used to perform two dimensional intlefpan to estimateAf . Here the estimates
remain close to the actual value for a greaterearfgAf (approximately O to 100 Hz) but
above this the estimates begin to ‘overshoot’ ttitaad value. This is due to estimates &A
being too low for higher values df , as expected from figure 4.14. Increasing the rermb
of iterations beyond 3 does not appear to imprdwe accuracy of the method. However,

taking the mean OfAf values for 3 and 4 iterations does give slightlypiaved

estimate

performance over the three iterations case.
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Figure 4.22: Estimation ofAf using three and four iterations and the mean cfetfestimates.

For some of these figures the estimated valuesaapgpebe ‘hard limited’ (for example the
AA = 60 dB case abovAf = 200 Hz in figure 6e). This is due to the consirag of m, c,
AA and Af values at some points during the iteration proc&sgures 4.23 to 4.25 show the

percentage error for this method (taking the aweraig3 and 4 iterations) and that which

occurs when measures &fA and Af are assumed to be independent as they have been in
previous studies. These figures clearly illusttéiee improvement imAf estimation that this

new method provides in the presence of amplituéagé. For changes in frequency of up to
150 Hz the error is kept very small even for veaygé changes in amplitude. Above this
range the error remains within 20% although thergrerformance is erratic in this region.
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Figure 4.25: Percentage error verdh for both estimation methods whef&A = 90 dB.
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Figures 4.26 and 4.27 compare the iterative andtiagi methods when estimatingA.
Figure 4.26 shows estimates AAwhen this quantity is assumed to be independenf of
Figure 4.27 demonstrates the improvement for fterations with the mean of the last two
iterations taken. As is the case when estimatdfiggome estimates exhibit ‘hard limiting’

where values in the estimation process have besstrained.

100

Af=0Hz
— —-af=125 Hz

1A estimate (dB)

AA (dB)

Figure 4.26: Relationship betweehAand AA, ;...for different values of Af without using an
estimate ofAAto improve the value obtained for teA, ;...
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80 80
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Figure 4.27: Relationship betweeAA and AA, ;. where the latter is the mean of estimates obtained
from 3 and 4 iteration

Figures 4.28 and 4.29 show the percentage errghi®new estimation method compared to

the existing method for two different values &f . The percentage error is logarithmically

scaled in these plots due to the large differencenagnitude between the error for the two
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different methods. In fact where there is no freguyechange the existing method performs

better then the new method proposed here, howevehis case the maximum error is

negligible (< 0.004 %). Where there is a frequedggnge the 2D interpolation clearly out-

performs the existing method.
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Figure 4.28: Percentage error verdiA for both estimation methods wheff = 125 Hz.
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Figure 4.29: Percentage error verdA for both estimation methods whefdf = 250 Hz.

4.3.3 Summary of algorithm

20

By means of a summary of the proposed RDA metheddis code of the algorithm used to

produce the improved estimates shown in the figureection 4.3.2 is given:

1. Perform zero-phase and zero-padded windowing onlexdgth frame of input data

with the basic and time-ramped window functions.
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2. Perform FFT on both sets of windowed data.

3.

Identify potential sinusoidal peaks

For each peak in turn:

Vi,

Fit second order polynomial to time reassignmetd dad obtaim andc.

Assuming Af is 0 Hz estimateAAfrom ¢ (1D linear interpolation) constraining

the value oftc beforehand (i.e. I is higher than the maximum value stored in the

1D wavetable set it to the maximum value and ifisitlower set it to the

minimum). ConstraifAA so that it lies within the range 0 — 96 dB.

Use both AAand (constrainedn to produce an estimate oAf (2D linear

interpolation). ConstraiAf | so that it lies within the range 0 — 260 Hz.

Use bothAf and (constrained) to produce an updated estimate/#. Constrain

[2A.

Use both AAand (constrainedn to produce an updated estimate Af .

Constrain|Af|.

Repeat steps iv and v twice.

Take the mean of the last two estimate?\éf and Af and use these as the output estimates

of these two parameters.

4.4 1mproving frequency and amplitude estimatesfor non-stationary

sinusoids

4.4.1 Frequency estimation

Like most FFT based frequency estimators the frequeeassignment technique gives an

estimate of the mean instantaneous frequency aingponent during the analysis frame.

Where the amplitude is constant during the franes this estimate will be the same as the

actual mean instantaneous frequency of sinusoicergvthe amplitude is not constant this

estimate will be weighted by the amplitude functievhere there is no frequency change
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during the frame this amplitude weighting will nativersely affect the mean frequency
estimate. However, in the presence of amplitudefesgliency change the mean frequency

estimate will be biased by the amplitude functidhis biased frequency estimate is referred

to here asf,_ (the amplitude weighted mean) whereas, in ordefutly separate the

amp

amplitude and frequency functions in our analykispwledge of the non-weighted mean

instantaneous frequency, referred to heref ads required. Other non-stationary sinusoidal

modelling systems simply usé e.g. [Lagrange et al, 2002], but in a system tvhic

amp?
includes large amplitude changes, such as the dB9&nge adopted in this thesis, this will
produce large errors in the model. For examplég@i2z frequency change combined with a

96 dB amplitude change can produce an error iestiemate off of up to 74 Hz.

In this section a method is proposed to correstltias and produce a more accurate estimate

of f from estimates off_

ampr A OA and Af . Taking the continuous case of a non-stationary
sinusoid, as in (4.1), with the known paramefess, AA and Af where AAis given in dB
and is assumed to be exponential akfds given in Hz and is assumed to be linear, the

sinusoid has the following amplitude and frequefurictions:

f(t)= f+%ﬁ (4.4)

At) = A{lo(ig]tJ (4.5)

wheret is in the range -1 to 1 for a single frame. Tlasge fort is chosen since it greatly
simplifies the following integration. The mean ample of an analysed signal is found by
integrating the amplitude weighted window functiacross the entire frame. Likewise the
mean product of the amplitude, window and frequenaogtions is found by integrating that
product across the same frame. The amplitude wedghtean instantaneous frequency is
then given by the ratio of these two integralscdh be shown that for a Hann-windowed

function the amplitude weighted mean instantandé@aegiency is given by:
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) ;Jl' A(loat)( f +AZEJ(;+§cos(m)j dt

amp 1% (1 1

(4.6)

f(. 1 Af ! fin@ (1_
(e ) (a9 e d) o e (o)
= (a‘lj( 1 In@) j
a/lIn(a) 7 +In(a)?
[(Af)z}(i(nz -’ In(a) - In(a)*-In(a)®) - a( 7°+ 7*In( 9 ~In( 3 2+In(a)3)j

7 +In(a)?
(a_lj( 1 In@) j
a)lIn(a) 7 +In(a)?’

(4.7)

where:

az1d%) 4.8)

Rearranging to findf gives:

Af 1
)
amP (a_lj 1 In@)
a)lIn(a) 7 +In(a)?

[N)z](i(nz - In(a) - In(a)* - In(a)°) - a(77°+ 7%In( 9 ~In( 3 *+In( & 3))

(722+In(a)2
(a_lj( 1 In@) j
a/lIn(a) 7 +In(a)?

(4.9)

Using this formula to improve the estimate 6f, rather than simply assumin§ = famp,
gives a significant improvement in the model accyras shown in figures 4.30 and 4.31.

124



These figures show the magnitude of thesstimation error for different values @Aand
Af with and without this bias correction. For bothuligs estimates aAAand Af obtained

using the methods described in previous secticathier than the actual values used to
synthesize the sinusoids, were used in the biasawn.
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Figure 4.30: f estimation error without bias correction for a sioid with a true non-amplitude
weighted mean frequency of 10 kHz.
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Figure 4.31: f estimation error with bias correction for a singswith a true non-amplitude weighted
mean frequency of 10 kHz.

4.4.2 Amplitude estimation

Amplitude estimation is also affected by non-stadiaty: frequency change within a frame
causes greater spreading of signal energy acrossaoound the peak, lowering the peak

magnitude and amplitude change causes the sigbal moore localised in time thus widening
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the main lobe. In addition to this the peak magtetwaries with the difference between
f and the actual centre frequency of the bin in whith peak appears. For stationary

sinusoids, knowledge of the magnitude of the windawction in the frequency domain
allows amplitude estimation errors caused by dmndrom the centre of the analysis bin to
be corrected (see section 3.11). Since no andlys@tion for the Hann window of a
sinusoid with non-stationary frequency is knownhdés been proposed to calculate the
magnitude spectrum of the window via FFT [Lagraegeal, 2002]. From this an ‘amplitude
factor’ is derived which is multiplied by the irati amplitude estimate. Using such an
approach requires an additional FFT to be calcdldte every peak in the magnitude

spectrum of each frame which is likely to be prathzbly expensive in a real-time context.

Two new approaches are proposed here which do ewire additional FFTs to be
computed: estimation of the amplitude correctiontda by two dimensional wavetable
lookup (as used to estima#®Aand Af ) and by modelling the relationship between the
amplitude correction factorAAand Af , with two polynomials. Figure 4.32 shows the
relationship between the normalised amplitude (ihee amplitude is 1 for stationary
amplitude and frequencyf\Aand Af for a sinusoid whose frequency is the exact ceoitre
an analysis bin (10.02 kHz in this case). The \aliee the amplitude correction wavetable
are simply derived by inverting the amplitude valuggain a 100 x 100 array is used to store
values and linear interpolation is used. Figure&84Bows the percentage error in amplitude
estimation when using this array to correct FFTiveer values for non-stationary sinusoids.
A 150 x 150 array is used to exercise the intetpolaand the centre frequency of a different
bin is used (1.001 kHz).
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Figure 4.32: Normalised amplitude as a function AAand Af for a sinusoid with mean frequency
10.02 kHz.
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Figure 4.33: Percentage error in amplitude estondior a sinusoids with mean frequency 1.001 kHz.

The second method investigated is to find the aongéi correction factor by multiplying two
quartic polynomials. These polynomials are fittedthie data from figure 4.32: normalised
amplitude againsiiA(for Af =0) and againstAf (for AA=0). Figures 4.34 and 4.35 show

this data and the quartics that produce the bast &guares fit.
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Figure 4.34: Amplitude correction factor against derived from 8192 point DFT of a 1025 point

Hann-windowed sinusoid and quartic polynomial whicbvides the best fit to this data.
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Figure 4.35: Amplitude correction factor againsA derived from 8192 point DFT of a 1025 point
Hann-windowed sinusoid and quartic polynomial whicbvides the best fit to this data.

The non-stationary (ns) amplitude correction factagiven by:
a, = f(AA) g(Af) (4.10)
where f (x) and g(x) are the quartic functions.

The percentage error in the amplitude estimatedymed by this method is shown against
AAand Af in figure 4.36. As for figure 4.33, a 150 x 150aarof values and a sinusoid at

1.001 kHz was used in the error test. Clearly the timensional interpolation performs
better in terms of error, however it may be a usafernative in situations where memory is

scarce or on systems where memory lookup is aivelatexpensive operation. It is the
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former array lookup and interpolation approach Wwhig used in the sinusoidal modelling

system described in chapter 6 but this latter aggras included here for comparison.
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Figure 4.36: Normalised estimated amplitude ofietary sinusoid with and without correction for
window shape.

Whilst these methods take account of the effecaraplitude and frequency change on
amplitude estimates they do not incorporate cdoecfor the main lobe shape. For a
stationary Hann-windowed sinusoid the amplitudadia@s a function of distance of the

frequency from the centre of the peak bin is giasn

_d@1-d%)

Qindow — Sln(ﬂd) (411)

whered is the distance from the centre of the bin asptioportion of the width of one bin.
Equation (4.11) can be easily derived from (3.3he advantage of using this correction

factor for a stationary sinusoid is shown in figdt87.
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Figure 4.37: Normalised estimated amplitude ofietary sinusoid with and without correction for
window shape.

Where there is flattening of the main lobe dueda-stationarity then this correction will no
longer produce a constant amplitude across an sisahin and, in cases of extreme
flattening, it will actually make the amplitude iesate worse. A simple but effective
modification to the stationary window correction psoposed here. This uses the non-
stationary amplitude correction factor, derivedngseither of the methods described earlier
in this section, as a measure of the lobe flatggniiiis modified correction for the window is

given by:

1
(- d?) o
a‘nswindow%( Sln(ﬂd) j (412)

In the presence of non-stationarity this produgesrroved window correction as shown in
figure 4.38 for a sinusoid whose amplitude changgs96 dB and whose frequency is
stationary. It can be seen that the stationary swndorrection produces an over-correction,
resulting in a greater error in the amplitude eatanthan when no correction is used. The
proposed non-stationary window correction perfotmest. It should be pointed out that
where there is a high zero padding factor, asas#se here, the change in amplitude without
correction for window shape does not exceed the nosiceable difference for intensity
which is not less than 0.3 dB [Riesz cited in MQat897]. However the non-stationary

correction described here is relevant in situatwhsre lower zero-padding factors are used.
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Figure 4.38: Normalised estimated amplitude of sindi with stationary frequency whose amplitude
changes by 96 dB with and without correction fondaw shape.

Combining amplitude correction for non-stationarégd window shape gives the overall

amplitude correction factor:

a'combined =a ns Windoma n (4 13)

45 Predicted variance of data from polynomial fit as a measure of

sinusoidality

451 Overview of method

A common method for determining whether or not ectial component is a sinusoid is its
behaviour across frames. If, using an analysisiigcie whose basis functions are sinusoidal,
the estimated parameters of a component remaiiorstgy, or close to stationary, over a
number of frames then it is likely that such a comgnt is a sinusoid. For example, the
McAulay-Quatieri sinusoidal representation of spedionks components between frames
which give the smoothest frequency trajectory [Mtz3uand Quatieri, 1986]. A real-time
system cannot be anti-causal, it cannot look fod®wan time to determine whether the
evolution of parameters of a given candidate sia@omponent will match up with those
of a component in the next frame. Causal analggmssible but increases the delay between
an analysed event and its manifestation in thehggied output. For example waiting a
frame before making a decision on whether a comutanegramek is a sinusoid (by finding

a component in framlet1l whose parameters link with this component) mehasit cannot

be recognised as a sinusoid, and synthesized hswsud framek+1 has been analysed. This
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would either double the latency of the system asultein the sinusoidal component being
synthesized as part of the residual signal inrnitseb frame and then as part of the sinusoidal

signal thereafter meaning that it is misclassifmdpart of its duration.

As stated in the introduction to this chapter thérdtion of what constitutes a stable sinusoid
has been modified for the real-time analysis cantx this thesis. Here a sinusoidal
component is one which behaves as a sinusoid whuidg the current analysis frame given
the estimated parameters discussed sections 4.8.4nH it does not then it is rejected as a
sinusoidal candidate and is retained for furthealysis as part of the residual signal. Some
use can be made of causality; a component thattrheyle been rejected on the basis of its
behaviour in the current frame might still be ird#d in the sinusoidal signal if links well
with a sinusoidal component from the previous frambis ‘current frame behaviour’
approach is already employed in sinusoidal analstems to a lesser or greater extent. For
example, any sinusoidal identification algorithnattibegins by searching for peaks in the
spectrum is basing this part of its analysis on ¢Rpected behaviour of the magnitude
response for a sinusoidal component. Other exampilesiore detailed analysis of the
magnitude and phase behaviour around spectral peatesdiscussed in section 3.6.4 of the
previous chapter and are two specific examplegaen in [Peeters and Rodet, 1998] and
[Lagrange et al, 2002]. The prohibiting factor wttre former approach is that the whole
signal must be acquired (for normalisation of thedamental frequency) and a disadvantage
with the latter approach is that an FFT is requiedest each sinusoidal candidate in each
frame, a requirement that would be likely to behibgively expensive in a real-time system
such as the one proposed here.

What is required is a method which can predictlibbaviour of DFT data for a sinusoid

given the parameterd, f, AA andAf, without simulation via FFT, and compare it to the

component under investigation. Since use has besfe rof fitting phase data (in the PDA
case), or time reassignment offset data (as iflRiDA case presented here), the ‘goodness of
fitt of the actual data to the polynomial derivetbrh it is an obvious candidate for
investigation. Whilst the energy weighted reassigninvariance has previously been
investigated as a measure of sinusoidality, thijg@gch uses supervised machine learning
for discrimination and does not take account of-stationarity [Hainsworth et al, 2001].

When the data is modelled as a second order polahdhe variance of the data from a

parabola varies withAf (with AA=0) as shown in figure 4.39. Since three points can
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always be fitted perfectly to a parabola the pofygiad fitting and variance measure uses two
points either side of the peak. The relationshippvben Af andm is also given in this figure
as a reference. It can be seen that the pointerof ariance coincide with the stationary
point (aroundAf = 250 Hz) and the points of inflection. Figure 4gidws how the variance
andc vary with AA (with Af =0). It is clear from these figures that baNAand Af affect
the variance therefore the way that these two sidak parameters interact to produce

different variance values should be examined. [Eigdi1l illustrates how the variance

changes as a function afAand Af .
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Figure 4.39: RDA measure) (top), and variance (bottom) versdd for a single Hann windowed
sinusoid. The mean frequency for each measuremd®t kHz. The amplitude is stationary.
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Figure 4.40: RDA measure,(top), and variance (bottom) versidA for a single Hann windowed
sinusoid. The frequency for each measurementtiossry at 10 kHz.
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Figure 4.41: Variance as a function &Aand Af for a single Hann windowed sinusoid.

The newly proposed sinusoidality test is straightBrd: extract the sinusoidal parameters as
described previously and then ‘look-up’ the expédatariance for the given values A and

Af in a two dimensional wavetable. If the expectedavare differs from the actual variance
by more than a specified threshold then the commpiaseconsidered not to be a sinusoid; i.e.
if:

o’ azmeasurid: v>V  (4.14)

expected_

wherev denotes the modulus of the variance differenceVadenotes the variance difference
threshold (VDT), then the component is not a siiusas for the two-dimensional look-up
described in the previous section an array of Q0P elements is used with ranges of 0 —
96 dB and 0 — 260 Hz fahA and Af respectively.

45.2 Performancefor ssimpletones

The first test of such a method is to determine highestv for sinusoids whosé\A and

Af values span this range but do not coincide wittsehealues used to produce the two-
dimensional array for the expected variance (sbtti&interpolation is properly tested) and
for a different value off . This is done here by measurindor a different sized 2D array
with values ranging from 0 to 96 dB and from 0 GD2Hz. The variation of with AA and

Af is shown in figures 4.42 and 4.43 for two differealues of f . When estimating the
expected variance the estimates/# and Af made by the algorithm described in section

4.3 are used, rather than the actual known values.
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Figure 4.42: Variance difference (4.14) as a fuctdf AAand Af for a single Hann windowed
sinusoid( f =1 kHz) .
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Figure 4.43: Variance difference (4.14) as a funcwf AAand Af for a single Hann windowed
sinusoid(f_ ) kHz)-
Significant differences can be seen between thege figures, demonstrating that the
variance is a function off as well asAA and Af . As is the case for the relationship
betweenm and Af , the variance fluctuations are smoothed by inéngaghe zero-padding

factor. Figures 4.44 and 4.45 show how the relatignbetween variance and frequency for

a non-stationary sinusoid changes with the zeralipgdactor.
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Figure 4.44. Relationship between variance andukaqy for a non-stationary Hann-windowed
sinusoid QA = 48 dB, Af = 130 Hz). The window length is 1025 samples, ta®phase DFT size
is 8192 samples.
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Figure 4.45: Relationship between variance anduiaqy for a non-stationary Hann-windowed
sinusoid QA = 48 dB, Af = 130 Hz). The window length is 1025 samples, ta®phase DFT size
is 65,536 samples.

In both cases the variance is affected by fluotmstiat two different rates (although this
harder to see in figure 4.45). The rate of theefaBltictuations is related to the width of the
analysis bin. The rate of the slower fluctuatioasreélated to the zero-padding factor. An
analytic method of predicting the variance behavioas not been found and is the subject
for future work. Despite this a comparison of tltual and predicted variance for a peak
may assist in the identification of non-sinusoigssketting the variance difference threshold,

Vin (3), so that it is higher thanfor all possible sinusoids, e.g. those wifAin the range 0-
96 dB and those witlf in the range 0-260 Hz. Repeated tests with sinssafidifferent f
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across this range of values did not produce a vallwehigher than 0.006 and this is used as

the value ol. This method is tested as follows:

1. An FFT is taken of a zero-phase zero-padded winddineme (the length of the audio
data is 1025 samples and the zero-padded len§81& samples).

2. The magnitude spectrum of the FFT is searcheddakf@ These are taken as being bins

in which the magnitude is higher than that of therfclosest neighbours on either side.

3. The reassigned frequengy, ) for each peak bin is compared with the bin nuntbeee

whether the bin is contaminated by a component farmoutlying bin or whether it is due
to a component within the actual frequency rangéhefbin. If the bin is contaminated
then the component in this bin is rejected as aidate sinusoid. As discussed in section
4.4.1 the range of frequency values takes accotinthe effects of amplitude and

frequency change on the reliability of the estimate

4. Finally, RDA is applied to the remaining candidatmsd the actual and expected
variances are compared as described above. Whereatiance difference is higher

than the threshol®l that component is rejected as a candidate sinusoid

When this test is run with a single stationary soid at 1 kHz only one candidate remains at

stage 4 and it has an estimated frequency of 108{z0 The variance difference is

5.27x 10*which is well below the proposed threshold of 0.0887 peaks are identified at
step 2 but 506 are rejected as being due to congdimn at step 3. Figure 4.46 shows the
variance differencey, against the estimated frequency for each compgotieat is still
considered a candidate after step 3 for a singladrcomprising a stationary 1 kHz sinusoid
and a full band white Gaussian noise signal. Bdétthese signals have been normalised to
have the same root mean square (RMS) value. The=fghows the threshold as a dotted line
and a log scale has been used for the verticaltaxascommodate the large rangevoThe
component due to the sinusoid has been circlede HéB peaks are identified of which 83
are rejected as contaminated. At step 4 10 peaksetained as sinusoidal candidates and 73
are rejected. Although the peak in the frequengyore of the sinusoid does not have the
lowest variance difference it is still comfortabhelow the threshold. Further analysis of

performance in noise is deferred until a comparisiomethods in section 4.7.
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Figure 4.46: Variance difference versus estimatedjuency of sinusoidal candidate components
(RMS level of sinusoid and that of the broad baoid@ are the same).

45.3 Peformancefor combination tones

Additive interference caused in multi-componentnalg is another important aspect of
performance; how do clusters of sinusoidal comptmeaffect their individual
categorisation? To examine this seven stationamyssids of the same level are combined in
a single frame and this method is considered fogai frequency spacings of 50,100, 200,
500 and 1000 Hz between each sinusoid (the frequehthe lowest sinusoid is 1 kHz).
Results for this test are presented in table 4.1.

50 Hz 100 Hz 200 Hz 500 Hz 1000 HZ

Peaks identified at step 0 499 485 484 48§
Peaks rejected at step 3 0 492 478 477 481
Peaks below threshold

0 3 7 7 7
(V) at step 4
Peaks above threshold

7 4 0 0 0
(V) at step 4
Mean of variance

_ 4.67 0.0541 | 1.96x10° | 8.28x10" | 8.33x 10°

difference Y) at step 4

Table 4.1: Performance of variance difference nathar a seven sinusoid composite signal with
different frequency spacings.

For spacings of 200, 500 and 1000 Hz the methotbqmes correctly in that it retains the
sinusoidal peaks identified at step 3. However sppacing of 100 Hz only 3 peaks identified
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at step 3 are retained at step 4 demonstratinddhatosely clustered sinusoids the proposed
method may well erroneously reject sinusoidal pehks have been correctly identified by
previous stages. At this spacing the mean of thiawee difference for each of the seven
peaks is much higher than the threshold value. Apacing of 50 Hz, whilst there are 7
candidates the variance difference for each is afbg threshold and so all are rejected as
sinusoids indicating that the system will give risdalse negatives at very close spacings of
such components. As discussed in the previous ehdfor a spacing this narrow a frame
length of 1025 samples is too small to achieve aaiegseparation of components (50 Hz is
slightly higher than the width of one non-zero padichnalysis bin yet the main lobe of a
Hann window is 4 bins wide). Figure 4.47 illusesthow the mean variance difference of
peaks retained after step 3 varies with the spagirtbese seven sinusoids. The mean is of
the lowest 7, or less if less peaks remain aftgy 8t values of.

For comparison figure 4.48 shows the relationskdpwben these two parameters when the
time reassignment offsets are modelled by a fastppposed to a second order, polynomial.
HereV is set such that does not exceed it for any pure sinusoids witha game range of
AAand Af values (0-96 dB and 0-260 Hz). In this casés set to 2.3. It can be seen that
using a second order polynomial allows narrowecisigabetween components than using a
first order polynomial.

Mean of variance difference
=
(=]
1

e I I I 1 I

100 500 1000 1500 2000 2500 3000
Frequency spacing between sinusoids (Hz)

Figure 4.47: Mean of variance difference (takenmfrthe 7 or less, if less than 7 candidates are

available, components with the lowest varianceedéfice). A second order polynomial has been used

to model the time reassignment offset data.
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Figure 4.48: Mean of variance difference (takenmfrthe 7 or less, if less than 7 candidates are

available, components with the lowest varianceedéifice). A first order polynomial has been used to

model the time reassignment offset c

10

Figures 4.49 and 4.50 illustrate the performancenfin-stationary sinusoids when using a
second-order polynomial. For figure 4.49 a sevensid cluster is used with each sinusoid
having the parameterdA=96 dB andAf = 0 Hz (grey line) anddA= 0 dB andAf = 0 Hz

(black line). In figure 4.50 each of seven sinusdids the parametefsA=96 dB andAf =

260 Hz. Further analysis and discussion of thissmemof sinusoidality is given later in this
chapter, by means of comparison with the perforreari@n alternative measure described in

the next section.

Mean of variance difference

s ! | | | | ]
100 500 1000 1500 2000 2500 3000
Frequency spacing (Hz)

10

Figure 4.49: Mean of variance difference (takenmfrthe 7 or less, if less than 7 candidates are
available, components with the lowest varianceedéifice). A second order polynomial has been used
to model the time reassignment offset data. Thg @reper) line represents sinusoids whose amplitude
changes by 96 dB during the frame but whose freqpueemains stationary. The black line represents
sinusoids whose frequency changes by 260 Hz dutfieg frame but whose amplitude remains
stationary.

140



Mean variance difference

e I I I 1 I
100 500 1000 1500 2000 2500 3000

Frequency spacing between sinusoids (Hz)
Figure 4.50: Mean of variance difference (takenmfrthe 7 or less, if less than 7 candidates are
available, components with the lowest varianceedéfice). A second order polynomial has been used
to model the time reassignment offset data. Thelitudp of the sinusoids changes by 96 dB and the
frequency by 260 Hz throughout the frame.

10

4.6 Differences in phase and magnitude reassignment estimates of
parameters asa measure of sinusoidality

As discussed in section 3.10, the reassignmentitedcin [Auger and Flandrin, 1995] and
commonly encountered in the literature uses paigalatives of the phase of the STFT with
respect to frequency (for time reassignment) amde ti(for frequency reassignment).
Alternative reassignment measures have been propusieh use the partial derivatives of
the magnitude of the STFT with respect to frequeffialy frequency reassignment) and time
(for time reassignment). The authors refer to tiernative method of reassignment as
amplitude reassignment (referred to here as magmitaassignment) and to the traditional
method as phase reassignment [Hainsworth and MacB893b]. The authors observe that
frequency estimates from each reassignment methlydconcur in the presence of a stable
sinusoid. This section investigates whether théeifices between magnitude and phase

reassignment estimates can be used as an indafdteg sinusoidality of a component.

Equations (3.134) and (3.135) given in the previchiapter are quoted in the literature for
the continuous case. In practice the scalings eppb the imaginary and real parts of the
equations have had to be adapted empirically ferdiscrete case of an 8 times zero-padded
FFT of a 1025 point window. The differences betwaemgnitude and phase reassignment of
frequency were considered first. As for the consitien of the expected time reassignment
offset variance in section 4.5, if the differengephase and magnitude reassignment can be
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predicted for stationary and non-stationary sindsdhen these can be compared with the
observed differences for a component in order terdene whether or not that component is

a sinusoid. Figures 4.51 and 4.52 show the modfltise frequency reassignment difference
(FRD) againstAA and Af for a sinusoid with f of 1 kHz and 10 kHz respectively. The
functions in each of these figures are charactriseridges whose position is dependent

upon the value off . Figures 4.53 and 4.54 show the modulus of the tigassignment

difference (TRD) againsfA and Af , again for a sinusoid withf of 1 kHz and 10 kHz
respectively. These functions are smoother thasettior FRD and there is less difference
between them for different values éf. For these reasons the TRD, as opposed to the FRD,

is investigated here as a measure of sinusoidality.

As for the variance test described in the preverion the proposed sinusoidality test uses
a 100 x 100 element array from which the expecte® Tan be estimated using 2D linear
interpolation. If the expected TRD differs from thetual TRD by more than a specified

threshold then the component is considered to @at §inusoid; i.e. if:

TRD

expected_

TRD,ped® > U (4.15)

whereu denotes the modulus of the TRD dudlenotes the threshold, then the component is
not a sinusoid. Figures 4.55 and 4.56 show hovaries with AA and Af for two different
values of f . As for figures 4.42 and 4.43 in section 4.5.2) ¥5150 points are sampled to

test interpolation of therRD, array and estimates ahAand Af are produced by the

xpectec
algorithm described in section 4.3. Repeated tedtifferent values off do not yield a value

of u higher than 8.0 and this is the threshold valliethat is adopted in subsequent tests of
this method.

142



0.5~

Reassi
assignment differen
ce

0=
100
80
60
40
150 200 250

AA (dB)
20
50 100
af (H2)

Figure 4
51: Mod
ulus of
the diffe
ren
ce between phasnd
amplitude
reaSSignm
ent offset

s for

frequen
cy for a sin
usoid o
f 1 kHz with the non-istad
ry parame
teraAand
Af .

P
(o feyte tare
AT £
é:-"o"“'o"o’"

[
o
@
£ 7
T q
e el
T 1.5 o B oyt s kot
c cors ;t'ao'-;-,inc"u
c - lll,fii,‘l-l.'l';l')"'}'p‘u’oD"’oooooio‘-!
. g (S ity sl oo,
=] Wt ,,’"a:'::c/mo,-a»g.,;.n-.nu.m'on 5
‘0 % c':oto» oob‘;&’.’.‘o.‘bc-ﬁ@ <2
,Ir"’l‘l’r!,h Lot llcll""l'. 00,"".‘000 e
[ b . W irs s (7 t'l;laa' AT ;’ovooo.qa-o'ool.&-o'oo 4,%3«.‘.9,‘».0.'*-:"
Irpoete LI ‘ll/o-i—' l'oc"ootlo' R 0"0'.0.'.000'-% e -
[ 2 It »,t.,f:,f,:,;,ll,:,w .4&@:.;:' e v S R S
P LITHE Lo s 4,:;:,'::'”:» e '.'o".'o'o" % —5-34-’-".‘.‘0»’& R et
o (5 s o e ATt st '00".""0’0‘0 "4’0’1’0“0"‘0 .‘;o‘.'.v.o:—"'.v:.-.' R SR
Illll’ll it e rate sty e A L .,o,..o,',@ 'o'o‘o'o'o’." el ST e I
It,'lq’ll,",": i 't,’l/l":,l',ft!'.‘::b :.O.Oo'o.‘.'.%'.'éforro' i 20:-:«0':-‘.-:« SRS ST
0-l ll[’”]fl’]"]”l’f’,’ll”l’ll”l””’l”:;fO';!l:l:'o":‘o‘w""’Q:q:‘:s"0'.‘?’3‘!034,‘0’0’#0.’0’3’.’.:: .-r-::o::-::.:::::::
ey l,'r','o/q it o.'t.r"oli‘:-.'o:oao':’o:c:'.'.'."o, G ‘:"-'o'to:-'.-:'- ST SRS
£y ol sttt SIS et e S e e -'o:.o:«’.oe.:.‘,-:- TSI FEEEEEE
'a"'z::::,",;;:z-',"'? *-%:::::z':a*::é::rzz:z;-‘::;z‘:fb:::fz-:::::fé:::::::r :::_—-5::.::::-::::=-'=:~::avw
tfa;::',’,":,";:"::!: ";ff:'?'o’":‘:'::f."."ﬁ."‘:"1:333:1‘:::3':3:3::::1-:-’:::::". = = o
80 ‘ff::::z::-’::!:z:::-::'«‘iézz’::“:zf:’:ﬁ" - -—=-=*:6=,;=g::t:::=t’::;:g.:=;f::“:::.:.;-§s:a,.vzﬁ€‘
! ;o::-_-':-'ozo:,-tz.:»":'::ﬁ:-' ‘:::-::-‘:—:-:-:o":::::::_:: = "'.—::-'5:‘::"‘-.»‘ g

150
Af(Hz)

Figure 4
.52: Mod
ulus of
the diffe
ren
ce between phand
amplitude
reaSSignm
ent offset

s for

frequen
cy for a sin
usoid of
10 kHz with the nortistzal
ry parame
terdAand
Af .

=
TR
TS e
STt = s,
SEom e S iatate R
-«-:-‘-.-.:w.:- .':“.«:.‘«'.w"»-.--:‘.‘::.
oo .-."'.-o setietests ettt LT,
sk ‘«,‘-‘5-‘:3‘-:.:.":“‘-:‘ ‘!\\!.\
s -‘::»::o o

e
v T

G
‘t““‘.‘ L
e Aa e
ey e

S

SRy

"-'=--'=:‘:‘:—'-‘.=:.‘.‘::»‘::=-.—.x:=;:.».. 52
‘:_.::.‘_‘,..‘_,...“.““..“... oo
Fot -‘"-33::33“3:.:“:‘:.‘::-::::-"\’3«“
:"““::“'.‘3«“‘3.‘«“2« A
SRS .:3‘-':-‘3“‘.‘»“.‘
e SR
S S ,.n-t:‘\“«‘:“, .
TEE IS it “:.‘u«t‘,“..a\\‘
5 ::::««:;:.-»«::-».-:::::m:::::‘ s
“‘--‘x‘a‘--s!!!\\\!“\\\m‘i\‘\‘i““‘v“‘"‘
i i\ ‘\“\"
e lusts o0
S T

"‘-

R
SeriRas
e At
et
e

52
S
=
R
S, W

sy

T e

LR

ey e <

TR, T
AT A

e IR

ATt
i
e
S

SRS

e BT 5
““‘l“‘ ‘.“\t‘\ phas
“{\»““‘-:.‘3-‘:3.“‘“.\ R
“““““m\\\\"‘“‘ SRy
I R ST
‘::::::\‘..::.': ST L ‘\\\\\\\\\
i TR ‘\‘\t“‘\t“‘\“‘ SRR \\““:‘\“
T “..‘....m.....‘.m ST
L T SR
= SRR R
WY et \\\“\“\‘\“\

Reassi
ighment di
- ifference
=1
!

=
SRR
SRR
«-:::::::‘-‘-:':.\
ey

e

32

= >
S

S

St

R
S SR

:‘-..

o R
60 T NGRS
SRS
S
R

2%
e

=T SITeTE
::\-‘«»-‘-“
s iy ‘-““-.“‘«::‘
S TSR R

SR u.“.‘“‘-.“ Lo
‘-.....“-‘«“»- R
SO SR o

“«‘-“““u“«n“
ol 35
SEaasedy

o

B <

T ATt
“«“\\‘“«“\“-‘“\‘\

o
SIS SovTee
ST ST
‘u-\-“-nm‘““ T
-‘»‘-“‘“«-‘“‘“\-‘.‘
-..‘“‘-“«.“-;«“‘-.

40

20

2A (dB)
&f (Hz)

Figure 4
e differen
ce bet
ween phasd amplitud
gnment off
sets for tim
e for

a sinusoid
of 1 kHz wi
z with the non-statio
nary pararefA
and Af .

143



60~

Reassignment difference

50{

40

30‘5.. R
20\;...
10~

e

s

ST,

e,

ST
St

S oo
ey R ee S
e et et .
e R T S et
SO ST
e e B R RS S SRS T T b L, N .
i T oy S ST L T b b S febde b S,
S S T S S T o T e S,
et s e e et e s e s w by
T L L A WA b
s U AN
ST LA SO hot O AD LS Ll St S ke s ol e, .
St e e T e [
o e et R T LA T b N oo T (LA S AT,
e e e e e A Tee
o e T Ry L S UL T Lt S S S Lt iy
e T T S ST A e L A T e
L A T LA LA RS R Ane
e s us
AR \\
T T L AT
ST T L LA Adecstn,
T AT IRt T et T e A e
T o T e B LS S L L e,
T T Ao e T e S oose
<
R
50 R S S T R
R as U
e 200
T e T L TR R e
AR AR
SEE 150

40
2A (dB) 20

Figure 4.54: Modulus of the difference between phasd amplitude reassignment offsets for time for
a sinusoid of 10 kHz with the non-stationary parsereAA and Af .

) ©
/

TRD difference
'
!

i
e
/ 0':“,‘“‘%
7 'I."‘"’ ’.ﬂ"‘h

)
i
e

ey
'!'%ﬂ )
) ':’,’lj%;:”%ﬂ"”om
R
fie
Ity R
i
A il
il l“' i sl

Af{H2)

Figure 4.55: Modulus of the difference between etge and actual TRD for a sinusoid of 1 kHz with
the nol-stationary paramete AAand Af .

[} ©
!

TRD difference
'S
{

(il o
Rt Y,
IVW; -

;,,‘.,;,t,,'#:,,';.wfu

\ Mjﬂ!"(““\n
L

it

el

Y h":);, ‘L”W‘:'

i e

i i ; 1 .h“h
i

b DAt

W ey
i ‘wl,\d!ﬁ?t-;ﬁ!\ }",’o.‘:::‘.‘t“,\,"f"
i)

!

250

A (H2)

Figure 4.56: Modulus of the difference between eig®# and actual TRD for a sinusoid of 10 kHz
with the non-stationary parameteh®\and Af .

144



This measure of sinusoidality has been tested énsdmme four-step algorithm described

previously. Figure 4.57 showsfor those peaks retained after step 3 of thisralguo for the

identical signal frame used to produce figure 4RiGe peak due to the sinusoid has been

circled and the threshold valug, is shown as the dotted line. As for the variagifierence,

the performance of the TRD difference sinusoidatigyasure is tested for sinusoidal clusters

with different frequency spacings between individbamponents. Table 4.2 gives data

equivalent to that in table 4.1 (section 4.5.3)tlus method. It can be seen from this table

that he cluster performance is worse than thatHervariance difference method since all

peaks are rejected at step 4 for a spacing of 1A0FHr comparison figures 4.58 to 4.60

present equivalent data to that in figures 4.474nA8.

TRD difference

3 |

..................................................................................................................................................................

0 05

1
Frequency (Hz)

15

2

x10°

Figure 4.57: TRD difference versus estimated fregyeof sinusoidal candidate components (RMS
level of sinusoid and that of the broad band nargethe same).

50 Hz 100 Hz 200 Hz 500 Hz 1000 HZ
Peaks identified at step 2 0 499 485 484 484
Peaks rejected at step 3 0 492 478 477 48
Peaks below threshold)
0 0 7 7 7
at step 4
Peaks above threshold)(
7 7 0 0 0
at step 4
Mean of variance
25.2 19.39 2.75 0.572 0.114

difference Y) at step 4

Table 4.2: Performance of TRD difference method doseven sinusoid composite signal with

different frequency spacings.
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4.59: Mean of TRD difference (taken from fheor less, if less than 7 candidates are
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stationary, the amplitude changes by 96 dB dutiegftame.
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4.7 Comparison of methodsfor theidentification of non-stationary

sinusoids
This section compares the two methods for nonestaty sinusoidal identification described
in the previous two sections with the correlatioetinod described in section 3.6.5 and
[Lagrange et al, 2002]. Although, as has been d==d, the correlation method comes at
high computational expense making it an unlikelpdidate for real-time applications it is
used for comparison here since it does offer sidasodentification on a ‘single frame’

basis.

The correlation method has previously been evaluaie relatively modest frequency and
amplitude changes on a ‘highest score’ basis: &mhdrame a certain proportion (10%) of
the spectral peaks with the highest correlation sues are considered to be sinusoidal
[Lagrange et al, 2002], [Lagrange, 2004]. The meashproposed previously in this chapter
have used a different approach: any spectral pdelsevtested parameter (either variance or
TRD difference) is within the range that might bgected for a single sinusoid, not in the

presence of noise, whogeAand Af values do not exceed 96 dB and 260 Hz respectiigely,
classified as a sinusoid. The correlation methaatlepted here to match this approach. Once
these non-stationary parameters have been estirtieedh and f are estimated, a sinusoid

with these estimated parameters is synthesizedensymectrum can be compared with that of
the actual spectral peak. Where the sinusoid islfyigon-stationary, particularly where there
is a large amplitude change, the correlation measan be significantly reduced. To prevent
this a two dimensional array (100 x 100 elemenfs)egpected correlation’ is used to

normalise the correlation measure. Therefore theeledion measure used here is:

fpeaktB H(f)
ZB H(f)|
fpeaktB H(f)
)3

[H(F)

peak+ B

W(f)

actual

r peak — =

(4.16)
W( )

expected

whereB is the number of zero-padded bins taken eithex sidthe peak (32 in this case),

H(f)is the actual spectrum antl( f)is the spectrum of the sinusoid synthesized froen th
estimates with an amplitud@) of 1. A plot of the array of expected values i®wh in

figure 4.61.
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Figure 4.61: Correlation versusAand Af for a sinusoid with mean frequency 10 kHz.

This array of values was then tested with a sirtgagih a different mean frequency and the

minimum and maximum values df __ taken as being the limits within which a sinusoid

peak

would reside. Figure 4.62 shows the values$ of  obtained. The range of values is 0.989 to

1.434.
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Figure 4.62: Range of correlation values veré&and Af  for a sinusoid with mean frequency 1

In terms of the cost per candidate, the variandkerdnce method requires 15 multiply
operations and the TRD method requires 2 complexies and 2 multiply operations. The
correlation method requires an FFT to be perforfd@é 496 complex multiply and adds for
a 8192 point FFT) in addition to 64 multiply anddadnd 2 divide operations (for the

correlation calculation given by (41.6). Clearle tftormer methods which are proposed here
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are much cheaper than the correlation test. Akghmethods require one interpolated 2D
lookup operation per candidate.

Each of these three methods of sinusoidal ideatiba is tested with stationary and non-
stationary sinusoids embedded in different levélbroad band Gaussian white noise. The
four step procedure described in section 4.5.Z&sl dor each method. The first three steps
are identical (identify magnitude peaks and retaose due to bin contamination) and the
fourth step uses whichever method is being testadapce difference, TRD difference or
normalised correlation) to reject further peaksctEéime the test is run the percentage of
peaks rejected is recorded along with whether dinlyese is the sinusoidal peak. Each test is
run 100 times at each noise level and with diffeketues ofAAand Af . Figure 4.63 shows
the mean percentage of peaks rejected for eachHgstre 4.64 shows the mean percentage
of times that the actual sinusoidal peak is colyeaetained.

The variance method clearly performs best whergdlative noise level is low (-60 and -40
dB) since there are less false negatives and thibod rejects more peaks than the others
whatever the noise level. However where the redativise is higher the variance method

performs less well than the others, particularher@Aand Af are high.

Noise level
100

Hm. NN, NN BN -
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ol | e | e | e | e
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50 —+20dB
0

0dB,0Hz 24 dB, 65 Hz 48 dB, 130 Hz 96 dB, 260 Hz
AA AT

Figure 4.63: Non-contaminated peak rejection fatarece difference (black), TRD difference (grey)
and correlation (white) measures. At each relativise level 100 frames were created each containing

a single sinusoid (randomly selected mean freqyefdye noise level refers to the RMS level of the
noise relative to the RMS level of the sinusoid.
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The variance method consistently rejects around 87¥eaks, the TRD difference method
has a mean rejection across these tests of 72%hisyperformance drops from 81% at -60
dB noise to 69% at +20 dB noise. The correlatiothme only rejects 54% of peaks but its
relative performance in terms of false negativeseder than the other two methods at O dB
and +20 dB. For real-time applications where iha possible to implement the correlation
method a straightforward deduction from these tessithat the variance method works best
where the stochastic component is relatively lowewel and the TRD difference method
works best where it is relatively high in level.iJlsuggests that an adaptive analysis system
which selects its sinusoidality test method for hedi@me on the basis of the level of
coherence in the time domain input would perforrstb®evelopment of such a test is a
subject for future investigation. It should also tnembered that the variance method
performs better where there is close clusteringimmfisoids, as demonstrated in the previous
section. It is for this reason that the variancehoe is employed in the analysis-resynthesis

system described in chapter 6.

Considering the general application of such tedtsiousoidality, the specifics of the
implementation and application must also be comsitleA low rate of rejection for non-
sinusoidal peaks will lead to the synthesis al@amitusing sinusoids to synthesize noise
which will be computationally inefficient, countertuitive and possibly reduce the quality of
creative transformations. For example, where pgobifting is to be performed on the
sinusoidal part only the appropriation of noise poments into this sinusoidal part of the
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signal may well produce a perceptually undesirabilt. A high rate of false negatives,
which would leave sinusoidal components in the dwedi part of the analysis, may
compromise synthesis of this residual by causingegsive narrowing of the filters used to
shape the noise. In addition, if on-setting andsetting sinusoids (e.g. those with a high
degree of amplitude change) are not classifieduab shen their synthesized counterparts
will start late and finish early. The thresholdatthave been adopted here for each of these
methods have been determined in order to includlesialsoids with non-stationary
parameters in the ranges previously stated. Theeshtolds could be adjusted by the user or

adapted to the signal itself and, again, this wan@@pplication and implementation specific.

4.8 Extension to arbitrary framelengthsand samplerates
For clarity the techniques in this chapter havenb@esented in the context of a sample rate
of 44.1 kHz and a frame length of 1025 sampleseiisibn to the general case of arbitrary

sample rate is achieved by the operation of scdhin, Af and AAestimates by the ratio of

the sample rate to 44.1 kHz.

Where different frame lengths are used the scalpegyation is more complex. For PDA the
AA estimates remain the same regardless of framethlesigce the phase distortion

measurements are a function of the change in ampliin dB per frame. ThAf estimates

(in Hz) require scaling by the ratio of frame ldmgtsince they are function of ‘bins per
frame’ [Masri, 1996]. For RDA the measure must be scaled by the ratio of frame lsngt
and them measure by the square of this ratio. This is bezathe measured time
reassignment offset for a given non-stationarityaaled by the frame length aads directly
related to this. RDA uses frequency in Hz rathanthins for thex axis of its polynomial and
sincem is a measure ofy‘by X' this scaling must be applied twice to this vallibe variance
must also be scaled by the square of the frameHemgjo since it is the square of sum of

errors in the estimation of Once the actual\f has been obtained it must itself be scaled

once by the frame length ratio since it is measurddiz per frame rather than bins per frame.

As an example of this scaling the following stedag the analysis presented in this chapter

to the frame length = 513 samples case:

1. Obtainm, ¢ and variance estimates for each component.

2. Multiply ¢ by 102 613
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2
3. Multiply m and variance bfloz%ls)
4. Reject non-sinusoids and obtahkfi and AA estimates
5. Multiply Af estimate byl %13.

4.9 Conclusions

This chapter has described methods, using reassignuaiata, for the identification of
sinusoidal components in a single DFT frame andttieir description in terms of mean
amplitude, mean frequency, linear frequency chaargk exponential amplitude change. A
modification of the phase distortion analysis ofsareassignment distortion analysis, has
been presented which uses a higher order polynamiptoduce more reliable, and more

frequency independent, estimates d#&fAand Af. The range of values ofAAand
Af considered in previous literature with this methioals been extended here and the
interaction between the reassignment distortionsomes forAA and Af (which also occurs

in phase distortion) has been taken account ofdD anterpolation system which uses array
look-up to produce greatly improved estimates wherere is a high degree of non-
stationarity. An analytic solution to removing thias in f in the presence of amplitude and
frequency change has been presented as has ameppoccorrecting the bias in estimates of
A with an adaptation of the analytic solution to #tade correction for window shape to
improve its performance in the presence of nonestatity. Two methods for using time
reassignment data for determining whether or nmracontaminated spectral peak is due to
a sinusoid have also been proposed, tested andactedhfo an existing method for single
frame identification of sinusoids. The variancefaténce and TRD methods proposed
certainly offer comparable performance to the @éxgstorrelation method without the need
to synthesize a sinusoid and perform an FFT fohaaagnitude peak considered. The
variance difference out-performs the TRD method rehthere is low noise or close

clustering of sinusoids but is inferior in the @aese of relatively high levels of noise.

At the time of writing this thesis new work has beriblished that offers an analytic solution
to the derivation of the four sinusoidal parametersa Gaussian window and an adaptation
of this for commonly encountered orthogonal wind®ush as the Hann and Hamming [Abe
and Smith, 2005]. This author has verified the métfor the Gaussian window, which is
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similar to that presented in [Peeters and Roded9ll8owever the Hann adapted method
produces very poor estimates for all parameterspeoed to the method proposed in this
thesis. This may be due to the fact that the meltipgression analysis used to derive values
for the adaptation from Gaussian to Hann window waly used over modest ranges of

sinusoidal parameter values (maximuxAof 2 dB andAf of 23 Hz per frame). Therefore

this method is not suitable, in its present formanalysis of the range of sinusoidal signals
discussed in this chapter. Useful further workhis tarea of spectral analysis would be to
perform new multiple regression analysis for théagted method over a much greater
parameter range so that a useful comparison betwee=radapted method and the one

described and investigated in this chapter can ddem
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5 MODELLING AN AUDIO SIGNAL ASNOISE FILTERED BY A
BANK OF TIME VARIANT PARAMETRIC EQUALISERS

5.1 Introduction

This thesis investigates how time-frequency andtsmale analysis techniques can be used
to produce real-time spectral models of audio dggriehe generic spectral model used is the
‘sinusoids + noise’ (or ‘deterministic + residualdpproach that began, and is most
commonly associated, with SMS [Serra, 1989]. Thevipus chapter detailed methods for
using data from a single frame of a reassigned @H@entify and numerically describe the
sinusoidal components it contains. Once this detestic part of the frame is known the
residual part, which is assumed to be noisy orstsiic since it contains no components that
are well modelled by non-stationary sinusoids, barderived by subtracting the sinusoidal
part from the whole signal. This subtraction carpbdormed in either the time or frequency

domains and is discussed in the next chapter.

This chapter describes how the residual signalbeamodelled as a broad band noise source
which is shaped by a bank of time-variant equadisaH three equaliser parameters are time-
variant: centre frequency, gain and quality fad@j. The parameters for these filters are
derived from the complex wavelet transform. To aliasing and shift variance but retain
low computational cost a combination of the undeded and decimated wavelet transform,
the partially decimated wavelet transform, is désct and evaluated. The ‘frequency
splitting’ technique [Daubechies, 1992] is usedditermine the Q of each filter. The
intention is that this wavelet-orientated approaffiers an intuitive and efficient means of
describing ‘non-sinusoidal’ components such asehm®duced by long term random and
impulsive processes. However, there are some dsdalges to the short-time wavelet

analysis proposed here and these are also discaksepwith possible solutions.

Although in this context the analysis system déscdihere is intended for frame by frame
residual modelling it is hoped that the use of clexmB-splines will also have general
applications to spectral modelling of audio signalberefore the modelling of spectral
components using this system is described in argeoentext and additional aspects of the
system not implemented in the frame by frame spkatiodelling system described in the

next chapter are also surveyed.
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Early sections of this chapter describe the pdytidécimated complex wavelet transform
(PDCWT) and how it is used to produce gain andrednéquency trajectories for each of the
filters. The use of the splitting trick to deriveetQ trajectory is then described. Later sections
discuss how these parameters are then matchedde ¢l the real IIR filters which are used

to filter the noise source at the synthesis stage.

5.2 Thecomplex B-spline wavelet transform

Spline wavelets are described in detail in secB@8 of this thesis. They are used here for
three reasons. The first is that with increasingeporder the wavelet function tends to the
modulated Gaussian of the Morlet wavelet which basstant instantaneous frequency
[Flandrin et al, 1995] and has optimal localisatiortime and frequency. The second reason
is that the time/frequency localisation of the tismale atoms can be controlled via the order
of the spline; a higher order spline is less I@ealiin time but better localised in frequency
than a lower order spline anite versaoffering the user control over this important extp

of time-scale analysis. Finally, they are compadiypported meaning that they can be
implemented using FIR filters within the waveleartsform without truncation errors.
Although these wavelets are not orthogonal thisnreliorated by over-sampling applied in

this case and the magnitude correction for frequelescribed later in this chapter.

5.2.1 Wavelet and scaling functions

The low pass coefficients for the scaling functame given by (3.88), which in the case of

the B-spline simplifies to the binomial kernel:
hin=uln. (5.1)

To accommodate both odd and even length splineroittie following causal definition of
the binomial kernel (adapted from [Chui and Wan@9Z]) is used here, rather than the

symmetric even-only formulation given by (3.92):

1 (m+l
m — , 0smsn+1
u [ =427 n

0, otherwise

(5.2)

The high pass coefficients for the wavelet functéwa given by (3.89) which, for causal B-

splines, simplifies to:
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ol =yl #* ((2)" d hf ((2)" 8" In) (5.3)

Where b®™! is the B-spline of orderr@ + 1. An explicit formula for the B-spline that does
not require repeated convolution of step functiegiven by (3.86). When investigating
high-order splines and evaluating (3.86) with deuptecision floating point numbers the
equation was found to produce incorrect resultddaoge, positive values af The cause of
this error has not been investigated further bus ithought that it may be due to small
numerical differences in the magnitude of termshinitthe summation that should cancel.
These are then magnified by the high exponent enpibwer function giving the observed
error. Although such high order splines are not leyga in this thesis for general interest a
straightforward solution is given here. This exfgdhe symmetry of (3.85) and reformulates
(3.86) as:

oy 1ML m+1Y"
B (x)—mé( . j(—1) (—|><1—k+ ” j (5.4)

Figure 5.1 shows the difference between the outptihe original and modified equations.
The range of values for has been constrained so that the context of tioe ean be seen
alongside the rest of the function. However forueal ofx > 10 the error grows rapidly in

size giving a value for the spline function, whelmould be very close to 0 at this point, in

excess o6x10" atx = 20.

Figure 5.1: Twentieth order B-spline as calculdigaquation (3.86) (top) and the modified equation
presented here (bottom).
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The real and imaginary parts of the wavelet coigffits are found by performing a real B-
spline wavelet analysis on the real and imaginagspof the analytic signal. The discrete

analytic signal can be determined in the discretgriEr domain by:

X (K), k=0,N/
X oK) ={2X(R,12 ke (N7) -1 (5.5)

o,(l\yz)+1sks N-1

There are two reasons for adopting this approach. Hérstly the binomial kernel which
forms the low pass filter of the spline wavelebisy defined for integers. Therefore the low
pass filter cannot be shifted forward by half a gemwhich is how complex wavelets are
commonly produced [Selesnick, 2001]. Secondly tierspecific application described in this
thesis the data is already available in the Foud@nain and so the analytic signal can be
readily derived. For applications where a time diomaplementation is required that uses
two different scaling functions to produce the raatl imaginary parts of the transform one
approach could be to perform the phase shift inFinier domain and then take the inverse
Fourier transform. However, in the case of the birab kernel this does not produce an FIR
filter and it is the compact support, and the supmvery compact at low spline orders,
which is one of the advantages of the B-splineyanmsl

It has been shown that this method of derivingathalytic signal fails for signals of the form

a,b,abah.. wherea and b are non-zero and an alternative method, the ‘@lilb

transform has been proposed [Elfataoui and Mircaan®004]. This method is not adopted
here since such signals correspond to continu@malsi at the Nyquist limit. Such signals
will have been extinguished by the anti-aliasinigefi if they originate in the analogue
domain and occur outside the range of frequendias ¢an be resolved by the human

auditory system in the specific case lgf=44.1 kHzadopted in this thesis. However it has

been found here that the imaginary output of tleerdte Hilbert transform is not perfectly
shift invariant and introduces a high frequencyefadt which appears in the complex
analysis. This is discussed later on in this chrapte

The scaling and wavelet functions of the zerottst fithird and twentieth order splines are
shown in figure 5.2 below. Figure 5.3 shows theresponding wavelet functions. The

underlying continuous functions are shown, rathantthe discrete filter coefficients. It can
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be seen that the zeroth spline is in fact the Maaelet which has the most compact support.
As the order of the spline increases so the sugbataling function and the wavelet widens.
Figures 5.4 and 5.5 show the effect upon the tiowalisation of an impulse that this
widening of the time support has at scales 1 araf &n undecimated complex wavelet
analysis. The time localisation is reduced for eaclelet analysis at the higher scale as is
expected for constant Q analysis. At both scalesz#roth-order spline wavelet analysis has
better time localisation but the shape of the ntagei curve at scale 5 is not smooth and
gives the impression that there are three impulsger than one in the analysed frame. It
can be seen that the shape of twentieth-order ruaigncurve is the shape of the Gaussian
function which high order B-spline scaling functotend to. Although B-spline wavelets
have been described in general in this sectionrdbieof the chapter deals with the specific
example of the cubic B-spline wavelet. This patdcurder offers a good compromise
between support width and time/frequency resolutptimisation: “our numerical results
tend to support the conclusion the localisationfggerance of the cubic spline wavelet

transform should be sufficient for most practigaplcations” [Unser et al, 1992].

1 1
05 N 05}
lE'2 -1 0 1 2 (_]4 -2 1] 2 4
Sample Sample
0.8 . - ! . : 04
06 N 0.3}
04 N 02}
0.2 N 01}
lE'!5 -4 -2 0 2 4 6 -020 -10 1] 10 20
Sample Sample

Figure 5.2: Scaling functions for the zeroth (teft)! first (top right), third/cubic (bottom lefgnd
twentieth order (bottom right) spline wavelet as@yat scale 1.
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Figure 5.3: Wavelet functions for the zeroth (teft)l first (top right), third/cubic (bottom lefgnd
twentieth order (bottom right) spline waveanalysis at scale
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5.2.2 Mean instantaneous frequency estimation

As is the case for the STFT the mean instantantegsency of a spectral component can be
estimated using the complex wavelet transform. &gasent is used for frequency
estimation in the STFT in the previous chapter ssittds method can be performed using
only the data in a single frame. Unlike the STF& wavelet transform provides more than
one coefficient at each scale (apart from the tsglseale of a critically sampled wavelet
transform). This implies that the mean instantaselbequency can be estimated from the

first order difference of the phase between cornsexgoefficients in a given scale within a

single frame:
T = (Peta 0 1~ Pt “)2F_n (5.6)
for an undecimated transform and
f_i,k,k+1 = (%etailj k+ 1~ Petai k) 21‘—1%2”) = 2|':;T (5.7)

for a decimated transform, whgres the scalek is the coefficient index at that scale ap$
the phase of the coefficient. Figure 5.6 showsetstamated frequency for sinusoids in the
range 20 Hz to 20 kHz. The frequency estimateslared using the undecimated complex
cubic B-spline transform, each estimate is produneéinding the phase difference between
the two middle coefficientsk(= 512,513) for a 1025 sample frame at scale 1urEi¢.7

shows the frequency estimates produced by the @éethtomplex cubic B-spline transform.

It is clear from this figure that the decimatedhsform does not sample the phase at a high

enough rate to prevent aliasing within the freqydsend covered by scale(l:S/4 to F,/ 2)

although at frequencies below this band the phatses slowly enough for the correct

frequency to be derived. At this scale the effecthampling rate is=,/2 whereas for the
undecimated transform it iB,. A straightforward solution to this problem isrtot decimate

the output detail coefficients at each scale. Whliss doubles the number of coefficients
produced at each scale it does not increase theutatonal burden since the detail
coefficients are not used in further iterationstioé decimated algorithm, it is only the
approximation coefficients that are used recurgivdlhis prevents aliasing at scale 1

however aliasing still occurs at higher scalesesitie number of detail coefficients at each
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scale is reduced by decimation of the approximatimefficients at the previous scale. There
are two possible solutions to this problem. Thetfis to modify any negative frequency

estimates via the following:

f_ — % + festimated f estimated< 0 (58)
corrected - _
festimated f estimate? 0
2xm4 . . . . .
1.8 b
1.6 b
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Figure 5.6: Frequency estimates derived from plia$a from scale 1 of the undecimated complex
cubic B-spline wavelet transform of a 1025 samp#nie. This is also the output of the decimated
transform if the detail coefficients that are outptieach scale are not decimated.
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Figure 5.7: Corrected and uncorrected frequendynasts derived from phase data from scale 2 of
the decimated (critically sampled) complex cubis@Bine wavelet transform of a 1025 sample frame.
The detail coefficients at each scale have not bleeimated.
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Figure 5.8: Corrected and uncorrected frequendynasts derived from phase data from scale 3 of
the decimated (critically sampled) complex cubis@Bine wavelet transform of a 1025 sample frame.
The detail coefficients at each scale have not bdeeimated.

However, (5.8) is only effective at the next lowsstle. At higher scales there is not a

unique relationship betweefy ., and f. ... Whilst non-decimation of the output detail

coefficients and use of (5.8) will produce a corfeequency estimate for a component which
falls within the frequency range of the scale anat tof the scale above, lower frequency
components can appear as alias frequencies witlinmange. Figure 5.8 illustrates this for a
decimated transform at scale 2. Therefore for #@ndated transform only the highest scale
is guaranteed to produce a corretestimate for a spectral component with any mean
frequency in the range 20 Hz to 20 kHz. The secswldtion is to sample the phase at a
higher rate as the undecimated transform does. ufigecimated transform theoretically
offers non-aliased frequency estimation for anycipécomponent at all scales (although in

practice this is limited at lower scales).

5.2.3 Shiftinvariance

An additional advantage of the undecimated transfisrperfect shift invariance. It has been
demonstrated that orthogonal dual tree waveletex wavelets implemented using two
‘trees’ of real wavelets with fractional samplefshbetween them) offer ‘approximate shift
invariance’ [Kingsbury, 2001]. The desirability shift invariance in an audio analysis
system, as opposed to one for audio data compressi@bvious. As discussed in section
3.84 there are both time domain and frequency doingplications of shift variance. For an

analysis system it is desirable that identical congmts should have identical magnitude
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wherever they occur in time and that identical comgnts should have identicdlfor all

scales.

A straightforward test of shift invariance in thené domain is to measure the maximum
deviation of coefficient values from the mean ciméght value for a unit impulse at each

position in an input sequence. The ratio of the maad the deviance, along with the upper
aliasing limit, for each scale is given in decib#ds the real and complex, decimated and
undecimated transforms in table 5.1. The variasceested across the centre of the input
sequence, since for overlapping frames only wawaefficients in the middle of the frame

are used for subsequent synthesis (the middle alies for a 1025 sample frame and an
overlap factor of 2). The values for the compleansforms were calculated as the modulus
of the transform coefficients. The values for trezichated transform were calculated with
non-decimation of the detail coefficients and (b&Bjtandard decimated algorithm would not
be shift invariant at scale 1. The lack of perf&ift invariance at lower scales of complex
transform is due to fluctuations in the imaginarymponent introduced by the Hilbert

transform. Figure 5.9 shows the detail coefficiaatt®ach sample position for both types of

transform at scale 2.

Scale Undecimated Decimated

Real | Complex| Non-alias limit Real | Complex| Non-alias limit

(dB) | (dB) (Fs) (dB) | (dB) (Fs)
1 —00 —00 1.0000 —00 —00 1.0000
2 -0 -0 1.0000 -6.7 -22.2 0.5000
3 —00 —00 1.0000 -71.5 -14.6 0.2500
4 —00 —00 1.0000 -0.6 -22.5 0.1250
5 —00 —00 1.0000 -0.6 -20.4 0.0625
6 —00 —00 1.0000 -0.6 -19.4 0.0313
7 -0 -107.8 1.0000 -0.0 -18.8 0.0156
8 —00 -65.5 1.0000 -0.0 -18.4 0.0078
9 —00 -49.0 1.0000 -0.0 -17.4 0.0039
10 —00 -55.6 1.0000 -0.0 -14.9 0.0020

Table 5.1: Comparison of undecimated and decimatactlet transforms. Shift invariance relative to
mean coefficient level (dB) and aliasing limit (tiple of sampling rate).
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Figure 5.9: Shift variance in scale 2 detail cagdfints for the decimated (top) and undecimated
(bottom) complex cubic B-spline wavelet transforms.

5.24 Thepartially decimated wavelet transform

It is clear that the undecimated transforms outperfthe decimated in terms of shift
invariance as well as mean frequency estimationtfetcomputational cost is high. The
undecimated transform is implemented as showngurdi 5 (adapted from [Shensa, 1992]).
This algorithm is numerically and computationallyuezalent to the arous algorithm but
offers a more straightforward and intuitive implertagion. For full dyadic decomposition,
circular convolution (i.e. the length of the sequeerto be filtered does not increase at

successive scales), filters of lendtf),. and L, .- and a signal of lengtN which is a power
of two the a Trous algorithm requirds. . + L, ) Nlog, N multiply and add operations

whereas the decimated transform (Mallat algoritneguires only2(L . +L,:)N . For a

10 scale transform the undecimated transform imBs as computationally expensive as its

decimated version.

In order to offer some mediation between thesedmtoemes the partially decimated wavelet
transform is proposed here. The principle is shiftgward: the algorithm begins by filtering
the signal and inserting holes into the filter Liatigiven decomposition level (scale) is
reached, at which point the filter remains the saamel the output is decimated for
subsequent iterations. The only other wavelet a@malyhat combines decimated and
undecimated transforms in this way is the over detepDWT (OCDWT) described in

[Bradley, 2003]. However, this system begins witttichation and then at higher scales
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switches to filter dilation. This order is reversedthe system proposed here since this way
shift variance is reduced at all scales.
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Figure 5.10: Alternative implementation of the ucideated discrete wavelet transform (adapted from
[Shensa, 1992]).

Figure 5.11 illustrates the partially decimated ®lav transform where increasing filter

subscripts1 indicate dilation by insertion @2 zeros. Treating the number of multiply and
add operations in the decimated part of the transfs a geometric series the c&tpf the

partially decimated transform can be approximatgd b

N(LLPF + LHPF)(U+(1_ 2_d))’ d>0
Nu( Lipr + LHPF) d=

C= (5.9)

whereu is the number of undecimated scales diglthe number of decimated scales. Figure
5.12 shows the computational cost factor for trams$ with u+d =) 10 scales, where the
cost of the decimated transforru$£1,d=9) is 1 and the undecimated transform is
equivalent tou =10,d = 0. Table 7.2 lists the shift variances and aliastéirat each scale for
two cubic spline transforms each with differentdisvof decimation. Figure 5.13 shows the
magnitude of the complex cubic spline transforracatle 8 for an impulse at the centre of the
analysis frame. Control of the amount of decimatmathin the transform offers a choice

between the computational cost and the resoluticgheowavelet analysis. It should be noted
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that even at full decimation the complex transfoilsnless shift variant than its real

counterpart although it is twice as expensive.
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Figure 5.11: The partially decimated discrete wetwghnsform.
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Figure 5.12: Computational cost of partially dediethl0 scale discrete wavelet transforms (relative
to the cost of the decimated transform).
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Scale 2 undecimated, 8 decimated 7 undecimated, 3 deetmat
Real | Complex| Non-alias limit| Real | Complex| Range(Hz)
(dB) | (dB) (Fs) (dB) | (dB)

1 —00 -0 1.0000 -0 -0 1.0000

2 —00 -0 1.0000 -0 -0 1.0000

3 —00 -0 1.0000 -0 -0 1.0000

4 -20.3 -41.6 0.5000 —00 —00 1.0000

5 -17.6 -38.5 0.2500 -0 -0 1.0000

6 -16.7 -37.4 0.1250 —00 —00 1.0000

7 -16.3 -36.9 0.0625 -0 -107.8 1.0000

8 -10.7 -30.1 0.0313 -68.3 -62.1 0.5000

9 -20.0 -27.8 0.0156 -65.2 -44.2 0.2500

10 -17.7 -28.6 0.0078 -64.1 -56.5 0.1250

Table 5.2: Comparison of wavelet transforms witffedént levels of decimation. Shift invariance
relative to mean coefficient level (dB) and aliaggslimit (multiple of sampling rate).
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Partially decimated (4:4)
""""""" Partially decimated (2:6)

Magnitude

1 1 1 I I 1 i
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Figure 5.13: Magnitude response of the complex cwdgline wavelet transform with differing
numbers of decimated scales. The figures in bradkethe legend indicate the ratio of decimated to
undecimated levels. The input is a single imputdbe centre of the frame.

5.3 Short-timewavelet analyss

5.3.1 Magnitude estimation errors

Although the use of wavelets described in this térals also applicable to non frame based,
non real-time signal modelling the specific apgima for this thesis necessarily divides the

signal into small sections to enable quasi reak-tanalysis. In the short-time Fourier case
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the time support of all the filters is the same aekhted to the frame length by the zero
padding factor. In the short-time dyadic waveletecthe time support of the filters doubles at
each scale. For the" order spline wavelet the time support, or lengththe low and high

pass filters in samples, at scale 1 is given by:

Lo.=m+2 (5.10)
Lo =3m+2 (5.11)

and, as a result of the convolutions and dilatiartbe transform, the wavelet length at sgale
is given by:

vaavelet = (2j_1 _1) L LPF+ 21_1L HPF_ :l (512)

For a single impulse in the centre half of the feafne the central 512 samples for a 1025
sample frame) the peak coefficient level will be #ame at all scales. At lower scales for a
full band component that lasts the whole frame,dbefficient levels near the centre of the
frame will double at each scale since the time etippf filter has been doubled. However
this relationship breaks down at higher scales@andéar the frame boundaries since the
local support of the filters extends beyond theniegi.e. where the signal level is zero). This
is shown in figure 5.14 for three different scaldseach scale a sinusoid the duration of the
frame, whose frequency is the peak frequency ofatéreelet filter at that scale, is analysed.
At the highest scale the magnitude varies througtimframe but as the scale is reduced this
variation is increasingly localised at the frameihaaries. At scale 10 the length of the cubic
spline wavelet is almost eight times the lengthhef frame, at scale 7 it is almost the length

of one frame and at scale 5 it is just under atquaf the length.
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Figure 5.14: Magnitude variations for a single simidal component during a single frame.

If the frames overlap then variations near framangaries can be ignored; the greater the
overlap factor, the more samples that can ignoe=at the boundaries. For example, with an
overlap factor of 4 and a frame size of 1025 theel&t coefficients of concern correspond to
the middle 257 samples of the frame. However fertighest scales (such as scale 10 in the
figure) there is significant coefficient variatigdhroughout the frame and increasing the
overlap factor will not eliminate this. The only w#o reduce the length of the filters is to
reduce the number of scales and, hence, the aniuaber of filters too. For example a 1025
sample frame could be modelled with 6 wavelet bpasts filters derived from the detail
coefficients at the first 6 scales and a low palsrfderived from the approximation
coefficients at scale 6. Whilst this would reduge flexibility of the model it would serve to
reduce these effects and, possibly, the computdticamplexity since less filter operations

would be required.

However, the high and low pass compact B-splirterlare not the power complements of
each other (i.e. their power spectra do not addottstant at all frequencies). Their power
spectra are shown in figure 5.15. If, at the filealel of decomposition, the approximation
(i.e. the remainder of the signal) is to be modkbg a fixed filter then that filter should be
the power complement of the final detail filterénsure that energy is not lost and a hole in

the spectrum is not formed. Such a filter can baseel in the Fourier domain by:
LPFpowercompIemen( f) = 1_( HPF( f)z) (513)

where HPF( f)is the magnitude spectrum of the high pass wafiékat given by:
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HPF(f)=2cos™ (71 f -1)) sind™9(f-1)  (5.14)

wherem is the spline order [Unser et al, 1993]. The magl@ spectrum of the power
complement filter is also shown in figure 5.15. §piower complement filter has a narrow
transition band and its derivative at the Nyquistjiency is not zero. A good approximation
to such a filter requires a large number of tapgurfé 5.56 shows the performance in
matching the desired magnitude response for FlRrdilwith different numbers of taps.
Performance is presented as the ratio, in dB,rof @nergy for each bin to the total energy in
the spectrum measured across an 8192 point DFTm&ller number of taps would be
required for an IIR filter with equivalent performze however such a filter is not compatible
with the atrous algorithm. Since the power complement fiteguires a large number of taps
the original problem of filter support extendingybad the windowed frame is not solved.
This problem is inherent in short-time wavelet gael, however further investigations into
the possibility of a solution will be the subjedtfoture work in this area. In the wavelet part
of the real-time analysis and resynthesis describetie following chapter the magnitude
scaling at higher scales is adjusted to comperfsatéhe support of the filters extending
beyond the frame boundaries. At these higher stiademagnitude scaler, rather than halving
at each successively higher scale (to compensatadaloubling in the support length of the

filter) has been determined empirically.
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Figure 5.15: Magnitude of cubic B-spline high and Ipass filter (solid line) and power complement to

high pass filter (dotted line). Frequency axisisinits of% wherej is scale.
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Figure 5.16: Error energy versus number of FIRfiliaps for the power complement to the high pass
wavelet filter.

5.3.2 Frequency estimation errors

The process of dividing a signal into separate &snmtroduces spectral artefacts into the
analysis. The rectangular window can introduce pibananges into the signal that did not
previously exist which results in a spreading oérgy in the spectral domain. Section 3.5.3
discussed how different window functions appliedsignal frames can reduce such effects
(albeit at the expense of widening the main lobéheffilter). It is not possible to separately
specify a window function for the wavelet transfoeimce its support would need to be
different at different scales. However the scalingction can be seen as analogous to the
Fourier window, especially for the B-spline wavslesince the scaling function is
approximately a non-modulated Gaussian and the letaigea modulated Gaussian, implying
that the window function is a Gaussian and the dyidg basis functions are infinite
sinusoids. In the context of a combined Fouriergletvanalysis system where the Fourier
analysis occurs first and uses a window functi@nisaproposed here, the wavelet analysis
will inherit this windowing in the residual signal.

The interaction of this window with the shape of thavelet and scaling functions impacts
both negatively and positively on the analysis. usfwe components introduced by the
rectangular window generate a long term, high feaqy ringing effect in the imaginary part
of the Hilbert transformed signal which has theeefffof smearing energy in time at the
lowest scale (this effect is also discussed ini@ed.4.1). For spectrally remote components
this has an adverse effect on the phase and, hdmeéequency estimation. Figure 5.6 in

section 5.2.2 was produced from Hann, rather te@tangular windowed, frames. Figure
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5.17 shows the estimated frequencies at scalearrted rectangular window. It can be seen
that these estimates are seriously corrupted balmut 6 kHz. Although this is out of the
local band for that scale it could lead to aliasofigout of scale’ components, although at
such a distance from the centre frequency of tlagelet filter they would be unlikely to be
high in level due to the attenuation by the filt€igure 5.6 shows that this effect is

completely eliminated by the use of a tapered wiwndo
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Figure 5.17: Frequency estimates derived from pHate from scale 1 of the complex cubic B-spline
wavelet transform of a 1025 sample frame wherectangular, rather than a Hann window (as used
for figure 5.6) has been applied to the input frame
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Figure 5.18: Frequency estimates derived from ploasa from the peak scale of the undecimated
complex cubic B-spline wavelet transform of a 182a&ple frame for two different window types.

An adverse effect of Hann ‘pre-windowing’ is pooestimation of the mean instantaneous
frequency at higher scales. Figure 5.18 demonstthtefrequency estimation in the range 20

Hz to 1 kHz for the peak scale for the rectangatat Hann windows. The estimates from the
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Hann windowed frame improve for decreasing scatéfan greater proximity to the centre
frequency of the wavelet filter (at which point® testimates are correct). As the frequency
increases above the centre of the wavelet filtes iinderestimated and as the frequency
decreases below the centre of the wavelet filtes dverestimated. The linear nature of the
relationship between the actual frequency of themment and the estimate suggests that a
rotation of the line about the centre frequencythef wavelet filter at lower scales would

correct the frequency estimates.

Figure 5.19 shows the error between the actualestichated frequencies across the audio
frequency range for an estimate taken at the carfttbe analysis frame (between samples
512 and 513 of 1025) and three quarters of the theyugh (samples 768 and 769). A
correction algorithm has been found which modeés ¢hror at each scale as a first order

polynomial f(x). The input to the polynomial is the deviation bEtestimate from the

centre frequency of the wavelet and the outpuhéspredicted error. The variation of the
slope of this polynomial with the distance from ttentre of the frame, in samples, from

which the estimate is taken is itself modelled aseaond order polynomiag(y). The

corrected frequency estimate is given by:
fCOI’I’ECI = f est_ 22(1_1)9 (y) f ( I:S f (ZJ - - f ES) (5-15)

wherey is the number of samples from the centre of theé;j is the scale and,f, is the

centre frequency of the wavelet at scale 1 (a éurdxplanation of this is given in the next
section). Figure 5.19 shows the error for the twbngates corrected by this method. This
method improves the estimates down to 50 Hz (ceestanate) and 70 Hz (off-centre
estimate). Below these frequencies the originahedes are better than the corrected ones.
This method is expensive to implement in a reaktsystem and has not been used in the
system described in chapter 6. As an alternatiyetéorming this correction proceduaéier

the wavelet analysis, the residual signal could‘bewindowed’ prior to analysis by
dividing its real and imaginary parts in the timendhin by the original window function.
However, in practice this is not successful duthopresence of artefacts introduced into the
imaginary part of signal by the Hilbert transforrRor this reason the centre frequency and
bandwidths of the lower frequency equalisers thaisggnificantly affected by this estimation
error are fixed at the centre of the wavelet anslgand in the current implementation of the

system described in the next chapter.
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Figure 5.19: Frequency estimation error for coedcand uncorrected frequency estimates taken at
the centre and three-quarters through a 1025 sargie windowed analysis frame for the complex
cubic spline wavelet transform.

5.3.3 Computational cost for linear convolution

In the previous section the costs of the decimatediecimated and partially decimated
wavelet transforms were compared for circular cdumvan (periodic extension at the
boundary, where the length of the filtered sequeltss not increase at each filtering stage).
Circular convolution is not desirable for time-scalnalysis since the purpose is to describe
where events occur in (linear) time. Where circdanvolution is employed a component
which occurs near the end of a frame may appear theabeginning of the frame in the
analysis, this is especially likely at higher sealehere the filter response is longer and so
more likely to wrap around. For short-time wavedetalysis circular time, as opposed to
linear time, within frames will make matching ofnaponents at frame boundaries difficult.
As discussed in section 5.3.1, for wavaeilysisof short overlapping frames it is most
important to capture events that occur near théreasf the frame accurately rather than
obtain the most compact representation possiblehytior example, might be the primary
objective for a data compression application. ks teason linear convolution is employed

at each scale with coefficients falling outside tagion of interest for the frame (e.g. for an
overlap factor of 4 this would be the region of mio’} samples across the centre of the
frame) being discarded from the analysis only wihés complete. Truncation of the filtered

sequence at each scale would distort the analysie aentre of the frame for higher scales.

Linear convolution increases the cost of the tramsfsince the number of samples to filtered

at each scale is increased. In a real-time contexbputational cost is an important
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consideration. This section derives expressionghi@rcost of convolution for different types

of wavelet transform described in this chapter.

When a sequence of lengthis convolved with a filter of length the output lengtlO is

given by:
O=S+L-1 (5.16)

For the undecimated transform the input sequenamatscale is the approximation of the
previous scale which is achieved by convolutiorhwite dilated low pass filter. Therefore,

for the undecimated transform, the sequence lehgthefore low pass filtering at scales

given by:
N; :(N-'-(LLPF _1)j_12n—1)= N+(LLPF_])(2H_]) (5.17)

WhereN is the frame length. This gives a total cost far transform of:

J

C= ( Lipe + LHPF)Z Nj :( Lipe + LHPF)( NJ+(( L pr _1)(2J -1- ‘]))) (5.18)
j=1
Whereld is the number of scales. For the decimated tramstoe filter output is decimated at

each scale and so the sequence length atjstatre filtering and decimation, is given by:
Nj - '7 N2 (D +( L, e _1)(1_ 2—(j—1))—‘ :’_ Z(i—l)( N- Lo + :)_,_ Lo — ﬂ (5.19)

Allowing for rounding up of numbers of coefficientshen an odd length sequence is

decimated the approximate total cost is given by:

J

C = (Lipr + Lupr) 2Ny =(Lipr + Lype ) (I Lipr =2) +( N= Ly +2)(2- 2072)) (5.20).

=1

Figure 5.20 compares the cumulative computatioosi at different scales of the decimated
and undecimated complex cubic B-spline transfomssg circular and linear convolution
for a 1025 sample input sequence. For compariserdilt of 1024 and 8192 point FFTs are
also plotted (FFT cost estimation is describeckictisn 3.5.2).
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Figure 5.20: Computational cost of various typesaplex cubic spline wavelet transform for an
input length of 1025 samples. Example FFT costsranladed for comparison, the cost of generating
the analytic signal is not considered.

Equations (5.17) — (5.20) can be combined to tatleuthe cost of the partially decimated
transform described in section 5.4. The cost afuwdating the undecimated scale coefficients
can be calculated directly from (5.18) whétés the length of the input sequence dnd U

is the number of undecimated scales. The cost leleding the subsequent decimated

coefficients is given by a modified version of &)2

C= ( Lipe + LHPF)Z N, :( Lipe + LHPF)( D( LdLPF_]‘) +( Ningec™ L apet 1)( 2- Z(D_l))) (5.21)

D
d=1
whereD is the number of decimated scales afg,..is the length of the final approximation

sequence output from the undecimated part of thestorm, given by (5.17) where

j =U +1, which is then halved (since this sequence isndategid before the next filtering

stage).L, .- is the length of the dilated LPF and is given by:
Loier = (LLPF _1) 27+1 (5.22)

whereU is the number of undecimated scales. The reasrthie combined HPF and LPF
lengths before the summation in (5.21) are notehgths of the dilated filters is because this
part of the calculation happens Tous’. Figure 7.9 shows the cost of a ten scattighg
decimated complex cubic spline transform implementéh linear convolution for different

numbers of undecimated scales.
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Figure 5.21: Computational cost of the partiallgideated complex cubic spline wavelet transform.
The number of undecimated scales is given. The eunolb decimated scales is the difference
between the total number of scales (10 in this)casé the number of undecimated scales. The input
is 1025 samples long. The cost of generating tlaé/ta signal is not considered.

5.4 Component modelling

54.1 Wavelet filter behaviour

It is proposed here to use the wavelet transforipréoluce data for controlling filters with
continuously variable centre frequency. Despite if@avcontrol of the time/frequency
localisation of the analysing filters via the spliarder, the centre frequencies of these filters
are fixed. The frequency estimation process desdriim section 5.3 offers a means of
estimating the mean instantaneous frequency ofutigerlying components which excite
these filters. However the estimated magnitudeshete underlying components will be
biased by the frequency response of the fixed veaviilers and this must be accounted for if
the underlying components are to be correctly amaitively described. This was discussed

for Fourier analysis of sinusoids in section 3.11.

As the order of the spline increases so the regultiavelet tends to a modulated Gaussian
(the Morlet wavelet) and its Fourier transform igpeximated by (and tends to with

increasingm):

) m+l

W(f)=2(C(f) (5.23)

wheren is the order of the spline and
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sin? ( 2rrf )

C(f)=———"
D 4t (£ -1)

(5.24)
This function is plotted in figure 5.22. The valofe C( f) is found by determining the value

of f at which its first derivative is zero and the fweqcy at which this occurs is the centre

frequency of the wavelet. This is found to be (eohto four decimal places):

f,=0.40%2 (5.25)

[Unser et al, 1992]. Therefore the centre frequenicthe wavelet at a given scgldor a
sampled signal is approximated by:

t=tofs (56

C 2]—1

but this will only hold if the input sequence haseh properly initialised (as discussed in
section 3.8.6). For spline wavelets it has beepgsed that this initialisation is performed by
convolving the input sequence with the B-splineooler m sampled at the integer§"
(equation 3.109) [Unser et al., 1992]. However #pproach has been found to be non-ideal
here, since the behaviour of the wavelet filtetoat scales deviates from that predicted by

(5.23), and an improvement to this initialisatisrproposed.
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Figure 5.22: The functio€©( f) (equation (5.20)). The peak val@{ f,) is shown with a dotted line.

! This is corrected from [Unser et al, 1992]. Ecoratf4.2) quoted in this paper is inconsistent wiga rest of
the paper (figure 2) and the quoted valueddrf,) .
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The Fourier transform of the continuous B-splin@aferm s given by:
30 :sind“ﬂ(‘—;) f)=8" (527

which is a straightforward result since the spbherdermis found bym+1 convolutions of
the zeroth order spline, whose Fourier transformthe sinc function. Figure 5.23
demonstrates that the DFT bf'is quite different at high frequencies from the tammous
function F(w)sampled over the same number of points. This esulthe wavelet filter at
scale 1 applying a markedly different gain nearNlgquist limit. The difference between the
expected and actual filter characteristics at staden (3.109) is used to initialise the input
sequence is shown in figure 5.24. The most strimgkérd solution is to apply the
initialisation in the Fourier domain and this i tApproach adopted in the system described
in chapter 6 since the data has already been transél for the sinusoidal analysis.

Otherwise the Fourier inverse of the quartic simction can be applied in the time domain,

however this produces a longer filter thialwhich has only 3 coefficients fon = 3.
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Figure 5.23: The Fourier transform of the cubiciree (quartic sinc function) and the 8192 point
DFT of the spline sampled at the integers. Bothpresented in the form of a low pass digital filter

where F, =44.1 kHz. Two truncated filters derived from the inverBFT of the quartic sinc
function are also shown.
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Figure 5.24: Normalised wavelet frequency respaisecale 1. The actual response is that derived
via DFT of the impulse response, the expectedaisdalculated with equation (5.19).

Truncation of the time domain sequence producethéynverse Fourier transform produces
a filter response which is closer to the idealighHrequencies but at the expense of an ideal
response at lower frequencies. As expected, inogalse number of coefficients improves
the approximation of the truncated filter to theatlone. Figure 5.23 shows the frequency
responses of such truncated and normalised filters,with three coefficients and the other
with five. The coefficients are given in Table 5.3.

Filter Filter coefficients
b 0.1667, 0.6667,0.1667
Truncated 3 coefficient 0.1897, 0.6207,0.1897

Truncated 5 coefficient | -0.0150, 0.1953, 0.6393, 0.1953, -0.01p0

Table 5.3: Coefficients for wavelet initialisatifiters.

When the initialisation is performed in the Fourigmain the actual frequency response of

the wavelet at scale 1 is visually indistinguisleaiobm the expected response in figure 5.24.

With this improved initialisation the peak magniudf the frequency response doubles at

each increment in scale since the bandwidth isdea{although this relationship breaks dov{%



due to truncation effects at the highest scalesleasribed in section 5.3.1). In the time
domain the peak magnitude of the complex impulsparse remains the same and the time
support is doubled. This is demonstrated for th&  scales in figures 5.25 and 5.26. This
is, of course, the expected result given the uacest principle but it can be seen from this
figure that complex spline wavelets present thssitein a very straightforward and intuitive
fashion. This, coupled with the possibility of fastplementation, makes them an obvious
choice for investigating constant-Q time-frequemegdelling. One anomalous result is the
lower peak magnitude and the different ‘skirt’ shap the response at scale 1. The cause of
this is temporal spreading of energy at high fregies in the imaginary part of signal by the

Hilbert transform.
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Figure 5.25: The time domain magnitude responsthefcomplex cubic B-spline for an impulse at

the centre of a 1025 frame. The first scale hasntémeowest response, the second scale the next

narrowest response and so on.
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Figure 5.26: The frequency response of the complgic B-spline wavelet at the first five scales
calculated from the 8192 point zero-padded DFThef above time domain responses. The scale
transition points are marked with dotted lines. fibenbers indicate the scales.
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5.4.2 Magnitude correction

With knowledge of the wavelet filter shapes and thean instantaneous frequency of the
analysed component it is possible to correct thgnibade estimate. At scajehe magnitude

correction factorm, is given by:

(C(f))"™ _sin™2(2rf,) (1 -
(C(f))™ sin®™?(2rf) £ (f,-

2n+2
)

(5.28)

Nl [Nl

)2n+2

where f, is defined in (5.25) and

j-1
f= —fes‘FZ (5.29)

S

where f__is the mean instantaneous frequency estimate in Hz.

est

5.4.3 Filter trajectories

If magnitude correction is performed, where the mewetantaneous centre frequencies of
more than one filter coincide it is only necessaryone of those filters to be used to model
the underlying component. This is analogous tostheation in the Fourier case where only
the corrected magnitude from a peak bin for a siitbis used to estimate the magnitude of
that sinusoid. This is because the correction restenergy to the estimate that has been
smeared into other bins and the magnitudes of ththe bins are ignored. The strategy here
is that in the wavelet case the filters are redcto bands and if the estimated centre
frequency strays outside of that band the filtesvistched off (its magnitude is set to zero).
The underlying component is modelled solely by filter ‘local’ to the band in which the
component lies. This is slightly different to sioidal tracking from Fourier data, where
tracks can ‘roam’ across bins until reaching a #awhere there is no destination for the
track to move to, at which point it dies. Here, whthere are many fewer frequency bands in
the analysis, the filter centre frequency tracks eonstrained to their local bands. This is

considered by this author to be a more intuitiveraach for wide band residual modelling.

The frequency bands for each scale are definedlsvE. The upper limit of the band for
scale 1 is the Nyquist limit. The lower limit ofétband for the highest scale is 0 Hz. The

transition point between the bands for scales 12aisdthe lower -6 dB point of the wavelet
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filter for scale 1. Likewise the transition poirgtiveen scales 2 and 3 is the lower -6dB point
of the scale 2 filter, and so on. The -6 dB pasndefined for the value dfat which:

()" = (c(f)) sin(2rzf ) _  sin(2rf, ) (5.30)

2 (VT 2(f- 3

This equation is transcendental and therefore by solution has been found. However,
using an iterative metholdcan be found within a very small margin of errbhis method
uses knowledge of the overall shape of the fundioabtain an initial guess fdérwhich is
then improved iteratively by minimising the errarthe calculation of (5.30). For the cubic
spline case this method gives (rounded to 4 deqitagks)

f=0.2829 (5.31)

where the error in the estimation of equation (bf8m this value is of the order di0™°.
The wavelet band transition points given by thisugaof f for the first five scales are
indicated by dashed lines in figure 5.26.

5.4.4 Estimation of component bandwidth

The frequency ‘splitting’ technique of [Daubechi&992] and its use in the wavelet packets
of Coifman and Wickerhauser [Wickerhauser, 19943 @ascribed in section 3.8.7. Splitting
of the detail coefficients in this way at each scsplits the scales into lower and upper
frequency bands. The exact nature of the frequeacoyls is, of course, dependent upon the
filters used in the wavelet analysis. The splittofga complex filter band into two further
complex bands offers a means of estimating thehwadtthe underlying signal component
analysed by the original filter. At one extremeg thstantaneous mean centre frequencies of
the scale filter (derived as described in secti@2) and the two split filters will coincide for
an impulse in the frequency domain and, at therotiheir centre frequencies will be the
same as those of the fixed filters for an impuiséhe time domain. Therefore the proximity
of the derived centre frequencies for the two caxplit filters can be used to estimate the

‘narrowness’ of the underlying component.

For the undecimated transform the split at eacltessaachieved by filtering of the detall
coefficients at that scale. The filters are obtdibg dilation of the high and low pass filters

used to derive the approximation and detail coieffits by a factor of two. For the decimated
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transform the split can be achieved by convolutbthe decimated detail coefficients with

the existing filters. However this would producevés split than scale coefficients meaning
that there could not be a one-to-one mapping caie<oefficient to its lower and upper split
coefficients. Therefore in the split implementatidascribed in this thesis the filters are
dilated and the scale coefficients left undecimatdtether the split is occurring for a

decimated or undecimated scale in the partiallyndated transform. Where splitting is used
in this way the number of detail coefficients atleacaledoesaffect the computational cost

of the analysis. Therefore the non-decimation dpoudetail coefficients to produce higher
time resolution and to reduce aliasing for the oeted transform described in section 5.3
will increase the computational burden.

Splitting at a given scale is achieved by convolubf the detail signal with the low and high
pass wavelet filters dilated by a factor of twonfrthose used to generate the approximation
and detail coefficients at that scale. Dilatioradflter's impulse response in the time domain
IS equivalent to an equal contraction of its regeom the frequency domain. Therefore the

frequency response of the split filters is given by

Wower (@) = W seue( @) HPF ( o(20)  (5.32) and

lower scal

l'I'Jupper(a)) = LIJ scale(w) LPF scagzw) (533)

The Fourier transform of the™ order binomial kernel, from which the coefficierukthe

LPF are derived (5.1), is given by:

U (f)=2cos™ (zf ) (5.34) [Unser et al, 1993]

and that of then™ order B-spline is given by (5.27). Modulation laé tNyquist limit (%) ,
achieved by multiplication of a discrete sequenge (b1)Z in the time domain, is

equivalent to reflection abou(%) in the frequency domain. Therefore the Fourier

transforms of the continuous equivalents of the &l high pass filter sequences given by
(5.2) and (5.3) after dilation are given by:

LPF(f)=2cos™ (2rf ) (5.35)
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HPF(f)=2cos™ (77 2f -1)) siné™D( 2 -1) (5.36)

The magnitude responses of the wavelet and thdggngpfilters at scale 2 are shown in
figure 5.27. Figure 5.28 shows the magnitude respoof the resultant filters after
convolution with the wavelet filter. Figure 5.29asts the underlying continuous time
domain functions of the split wavelets. The perhepsnter-intuitive result that the upper
split wavelet is produced by convolution with thBR and the lower split by convolution
with the HPF is explained by the fact that it ie tleflected parts of the filters’ frequency

responses (i.e. their responses ab&wzthat coincide with the region where the respafse

the wavelet filter is greatest. As would be expeaitthe dilation and convolution operations
of the splitting operations the split wavelets hgueater time support but are more localised

in frequency than the parent wavelet.
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Figure 5.27: Cubic spline wavelet and splittingefit at scale 1.
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Figure 5.29: Cubic spline wavelet (top) , lowelitsphvelet (middle) and upper split (bottom) furocts
at scale 1

The computational cost of the partially decimatgdt svavelet transform where circular
convolution is employed is double that of its ngfitscounterpart. As discussed in section
5.3.3 linear convolution is used in this impleméiota of wavelet analysis. The cost of the
split transform is the cost of the un-split tramsipgiven by equations (5.17) to (5.22), plus
the cost of filtering that produces the splits attescale. The split at each scale is achieved
by high pass filtering of the detail coefficientsthat scale followed by high and low pass
filtering with filters which are dilated by a factof two from those used to produce the
approximations and details at that scale. For th@ecimated transform sequence length,

Ns (thesindicates ‘split’), before the high and low papétiltering is given by:
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Ns = N 952 |= N2 (-9 (537

n

where N, is the input length to the splitting stage whisltalculated using (5.17). Therefore

the combined cost of all the splitting stages \&giby:

J

0= (lur + Lipe) NG =( hor + )X N+27 (=)

=1

=(LLPF + LHPF)(N‘J +((LLPF _1)(2J —-1- J))"'( Liipe — ])ZJ: 2_1J (5.38)
=(LLPF + LHPF)(N‘J +((LLPF_1)(2J -1- J))"'( Lipe — ])( 2 - 1))

And the total cost of the transform is given byiaddhe result of (5.14) and (5.24). For the
decimated transform the sequence prior to splitinthe detail sequence at that scale. The
length of this is given by length of the convolutiof (5.15) with the HPF:

NS =[ 2709 (N= Lpe + D+ Lpe + Lipe =2|  (5.39)
and the total cost of the splitting stage of theimated transform is given by adapting (5.16):
C = (Lupr * Lupe) (I Lior =1) +(N= Lipe +3)(2- 297)+ I L - 3) (5.40)

The total cost of the split decimated transforrgiien by adding (5.20) and (5.40). The cost
of the splitting stage of the partially decimate@dnsform can be calculated for the
undecimated levels by the addition of (5.20) andp as above. The cost of splitting at the

decimated levels is given by a modification of (5.4
C= ( Lipe + LHPF)(‘J( Laiee _1) +( Noingee™ Lacpet 1)( 2- Z(J_l)) + ‘]( L ghpe™ ])) (5.41)

where N is defined as for (5.21),, . is given by (5.22) andL,,.- is given by:

undec
Lorer = (LHPF _1) 27 +1 (5.42)

Finally the total cost of the partially decimategulitswavelet transform is given by adding
(5.21) and (5.41). Figure 5.30 shows the computaticost of the split and un-split,

decimated and undecimated complex cubic spline atransforms for linear convolution.
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It can be seen that the cost of the undecimatettsgpisform grows rapidly with increasing
number of scales and even for just three scalés dtose to the 8192 point FFT in this
respect. Figure 5.31 illustrates the cost of adeale partially decimated real cubic spline
wavelet transform with different ratios of undecteth to decimated scales. Only two

undecimated scales are available if the cost i leger that of an 8192 point FFT.

I T
—— Undecimated, split
—— Decimated, split
------- Undecimated, non-split
—=—-Decimated, split
5 —— 8192 point FFT {upper line)
—— 1024 point FFT {lower line)

Number of complex multiply and add operations

Number of scales

Figure 5.30: Computational cost of various typesafplex cubic spline wavelet transform for an
input length of 1025 samples. Linear convolutionsed for the wavelet filtering. Example FFT costs
are included for comparison, the cost of generatieganalytic signal is not considered.

I
——Undecimated part
-------- Decimated part
— Decimated and undecimated parts e

Number of complex multiply and add operations

Number of undecimated scales

Figure 5.31: Computational cost of the partiallgideated split real cubic spline wavelet transform.
The number of undecimated scales is given. The eunolb decimated scales is given by the
difference between the total number of scales i{1iis case) and the number of undecimated scales.
The input is 1025 samples long. The cost of geimgralhe analytic signal is not considered.

The purpose of split transform is to use the twlditonal mean instantaneous frequency
estimates from each of the ten scales to estirhatevidth of the component in each of their

bands. For example, where the underlying compoisemtsinusoid the measured width from
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an ideal analysis would be 0 Hz whereas for an lsgit would be the width of the entire
band. For an impulse the peak frequency of the wawelet split filters would be the
frequency for which the split functions shown iguie 5.28 peak. These frequencies can be
identified by finding the value at which the firderivative is zero (within the frequency
region of the peaks so as to avoid solving forde $obe as opposed to the main lobe). This
can be done for B-spline wavelets of any order twysaering the zeroth order case. The

peak frequency of the upper wavelet is given byiag!

2t (2f -1

4CO§( 22_fpeak)( 2Z.f2_ﬂf)— Slré Z-fpeak) CC(S ﬁfpeak)( - ):I;ZSInZ(ZTf ) (5 43)
mf (2 -1) )

=0

and the peak frequency of the lower wavelet iggilby solving:

23in( rf
7 f o (2

peak) D
- 1)2

peak peak

ITCOS(”( 2fpeak_%))_ Sll'(ﬂ'( Zpeak_%))
2sin( 2., ) sind % .,~1) TTf i
—ZSin(ﬂ( 2fpeak_%)) CO%”( zpeak_%)) Slné: Qpeak 2)
cos(n( 2fpeak—%)) siﬁ( peak™ 2) At o cos( arf peak)( X pak—l)ﬂ

fpeak(z f peak 1) _Sin( 277fpeak)( 6f peak J)

+

=0
(5.44).

These are both transcendental and so no analgtigion exists. Howeverf  can be
estimated with very small error using an iterativethod similar to that used to solve (5.30).
This gives values forf ., (expressed as multiples & /2" wherej is the scale) of 0.2919

and 0.4678 for the lower and upper split filterspectively, to four decimal places. Therefore
the maximum difference (i.e. that due to an impulsstween split filters at scajeis given

by:
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_0.176(F,

of ==

(5.45)

Figure 5.32 illustrates how differences betweenuency estimates at a single scale occur
where a component has spectral breadth. The freglestimates at scale 1 for the wavelet
and its splits are shown for a sinusoid and fangls impulse which occurs in the middle of
the frame (sample 512). There is a clearly visitiference in estimates for the impulse
whereas, at the same scaling of the vertical dkexe is no difference in estimates for a

stationary sinusoid.

Wavelet

— — - Lower split
L Upper split 7
1 ! ! ! |
EOO 505 510 515 520

Estimated frequency (kHz)

13 | | | |
00 505 510 515 520
Sample number

Figure 5.32: Frequency estimates at scale 1 fonwssid (top) and an impulse at the centre of the
frame (bottom). The frequency of the sinusoid & dbntre frequency of the wavelet (18.045 kHz).

5.5 Parametric synthesisequalisers

The purpose of the analysis described thus fanigmahapter is to provide control data for a
bank of parametric equalisers which are applied wehite noise source. Having obtained an
estimate for component width in the previous sectlos value is used to control the width
of the synthesis equaliserParametric equalisersare common tools in music studios.
Although the term equaliser is something of a mimseq since these devices are usually used
to ‘un-equalise’ a signal for creative effect istadio context, the term is retained here since
it is common terminology in audio processing forsmsuapplications. The term parametric in
this context implies that the user is offered cointf centre frequency, gain and bandwidth
(or Q). Bandwidth and Q are related by:

Q= Feenue (5.46) [Roads, 1996]

fhigh cutoff f

low cut off
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where f..is the centre frequency of the equaliséf,, ...sand f are the high and

centre low cutoff

low ‘cut-off’ frequencies respectively and theiffdrence is the bandwidth. Definitions of
what constitutes cut-off vary in the literature bus usually defined as the point at which the
modulus of the equaliser gain reaches some fraafothe modulus of the centre gain
(which, when given in dB, is positive for a peakialiser and negative for a notch equaliser).
Different definitions of cut-off are surveyed inrjBtow-Johnson, 2004]. The most complete
specification of equaliser bandwidth is to spedlifg cut-off frequencieand the cut-off gain
relative to the centre gain such as is given inngplementation in [Moorer, 1983]. In the
context of this thesis the bandwidth is given by tlifference between estimated frequency
of the upper and lower wavelet splits. The gaithat cut-off points can then be adapted to
suit the equalisers employed at the synthesis stagecan be offered as a user-adjustable

parameter.

The design of digital parametric equalisers is aoesearch focus of this thesis but a brief
overview of current practice follows. Further detaiay be found in the references cited.
Many digital equalisers are derived from a secortkioanalogue prototype filter with the

transfer function:

_S+astaf

= 5.47
s+ bstof (5.47)

H analogue( S)
where w, is the centre frequency aldandb are coefficients that are defined by the desired

shape and centre frequency gain of the filter. gdna of the filter at 0 andb is 1 (0O dB) and

is 2at the centre of the peak (or notch) [White, 1986Higital version of this filter can be
b

obtained via the bilinear substitution:
1-z1

= .48).
S i, (5.48)

Substituting this into (5.47) and ‘warping’ the lgue frequency givés

2 Warping is required to compensate for the nonlimeapping from thes plane to thez plane [Rorabaugh,
1999].
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1+ G - 2cod Q) z* +( 1—%/6) A

7 )7 ]

H(z) = (5.49)

where

(5.50)

and whereG is the gain (expressed in linear terms as opptsed), Q is the filter Q, and

Q, is the angular frequency expressed divided bys#mple rate [Bristow-Johnson, 1994],

[Bristow-Johnson]. The cut off is defined as théenpat which the gain is half the centre gain
(this time expressed in dB). This gives a compaoretily cheap digital equaliser however it
does not perfectly emulate the analogue prototyseribed by (5.47). Because the bilinear
transform maps the Nyquist frequency omste « the digital equaliser is forced to unity gain
at this frequency. A digital equaliser without thi®nstraint has more recently been
developed and is described in [Orfanidis, 1997]teH&ie gain of the analogue prototype at
o can be set to a value other than 1. This valgetiso the frequency of the target analogue

filter as it crosses the Nyquist limit. This gai@,{ is given by:

6 - \/Gé(wo—nz)+Gzn2(Aw)2(GEf— &)/(e*- &) .51

(a)o —722)+722(Aw)2(G§—GOZ)/(GZ— GBZ)

where G, is the gain at 0 Hz (set to unity for this appliea}, G; is the gain at the lower and

upper cut-off frequencies andwis the bandwidth in radians per sample. The transfe

function of the filter is given by:

G+GW + B-2(G- GW) Z7+( &+ ¢V B2

H(2) = ( (5.52)

where:

2 _ (2
w2= € =82 (553

192



A= /% (5.54)
B= /G‘;CZ%%D (5.55)

where:

c=(ae)c-al-2w(| G- G o[ G- @) ¢~ ) 50

D=2\N2(‘GZ—Q)Q‘—\/(GQ— G)( G- q?)) (5.57)

Clearly the computational cost of calculating tleefticients of the Orfanidis equaliser is
higher than that described by (5.49) and (5.50)wéie@r, the advantage of the Orfanidis
filter is that its behaviour is much closer to tbéthe analogue prototype, particularly close
to the Nyquist limit. This is demonstrated in figus.33 where magnitude frequency plots are
shown for the analogue filter and the two digita@ridations from it. Here the centre
frequency is 15 kHz, the gain at this point is B, the bandwidth is 5 kHz (the cut-off is
defined here as 6 dB below centre frequency gaumga Q of 3. Despite the improvement
this is still not a perfect fit to the analogue totgpe since the first derivative of the Orfanidis
filter at the Nyquist limit is zero, which is ndid case for the analogue filter. Therefore, for
centre frequencies and/or wide bandwidths close¢h& Nyquist limit the behaviour is
different to that of the filter at lower frequensieHowever this situation is an improvement
over the alternative case where the magnitude nsgpas forced to unity at this point,

resulting in unwanted attenuation of high frequecasnponents.

Figure 5.34 shows a bank of ten Orfanidis equaisach centred an octave apart at the
spline wavelet centre frequencies for each scaleh evith a bandwidth equal to the upper-
minus-the-lower split frequency, as would be meaduretween the wavelet splits for an
impulse. The gain of the summed responses is avarsin the figure. The gain at the cut-
off points is set here to —3dB since the equaliaezsntended for use with stochastic signals

with incoherent phase. The amplitude of the ripphe the magnitude response is
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approximately 6 dB and there is a gradual lifthe tighest octave due to the non-uniform
behaviour of the equaliser close to the Nyquisttlifhe upper octave lift can be countered
by scaling the bandwidth of this equaliser althotlgh sharpens the peak producing a higher
amplitude local ripple. A reasonable compromisevgen the two has been found to be a
scaling factor of 0.9 for the upper octave bandwidthe amplitude of the ripple can be

reduced by increasing the bandwidth or by raisireggdut-off gain relative to the peak gain.

Setting the bandwidths of each equaliser so thaemupnd lower bands intersect at each
other’s cut-off frequency, given by:

f 2

— — centre
fhigh cut-off — \/E f centre ™

f (5.42)

low cut-off

and increasing the cut-off gain to be 1 dB belogvfkak gain reduces the ripple amplitude to
less than 1 dB but this is at the cost of increasestaction between synthesis bands and too
broad a response for narrow band components susimasoids. At the time of writing this
thesis new work relating biquadratic digital fikeio high-order Butterworth, Chebyshev and
elliptic analogue prototype filters has been putdds [Orfanidis, 2005]. Such filters offer
flatter pass bands and sharper transitions thanfiltiees described in this section and
therefore may be more appropriate candidates sdwal synthesis equalisation.

12

T
— —Analogue filter
------- White\MoorerBristow-Johnson digital filter
10~ — Qrfanidis digital filter 3
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Figure 5.33: Magnitude response for a second adalogue filter and two digital derivations (after
[Orfanidis, JAES, 1997]). ThEs = 44.1 kHz case for the digital filters is shown.
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Figure 5.34: Magnitude versus log frequency foraalbof ten octave spaced Orfanidis parametric
equalisers. The centre frequencies are those atmplex wavelet analysis filters for an impulse an
their -3 dB points are the measured difference betwthe complex split wavelets.

The use of the measured difference between setjugncies in figure 5.34 has been given as
an example and there is no direct link between nessurement (derived from symmetric
FIR filters) and the bandwidth of the IIR filtersad here. In the current implementation of
this analysis synthesis system a user definedrliseaing is applied to the measured split
difference and this, along with the control ovet-cofi gain, determines the relationship

between the difference between the split analyisesss and the shape of the synthesis filters.

The estimated magnitudes are derived from anafif@ss which have a fixed bandwidth.
Therefore these magnitudes must be scaled to ntaehbandwidth of the synthesis
equalisers so that they pass the correct amowmeayy. The energy per unit gain passed by
the equalisers described here increases approxymatearly with bandwidth. Energy is
proportional to the square of the magnitude theeetbe equaliser gain is scaled in inverse

proportion to the square root of the bandwidthrisheo to pass the same energy.

5.6 Conclusions

The previous chapter of this thesis described nusttior the frame-by-frame identification
and description of non-stationary sinusoids in adli@ signal. Once these have been
synthesized and subtracted from the original signasidual signal ideally comprising only
broad band signal components remains. This chapgedescribed a system for modelling an
audio signal with cubic B-spline wavelets. Thesealets have been shown in the literature
to have excellent time-frequency localisation prtips as well as offering good edge
detection due to their compact support. There ardefver analysis filters than for a Fourier
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analysis of the same length of frame but they arestant-Q, having good time resolution at
low scales and good frequency resolution at higilesc Therefore it is proposed to utilise
this analysis method on the residual signal in t#raf. This is the ‘subtractive synthesis’
complement to the ‘additive synthesis’ of the clkapd in the heterogeneous spectral
modelling system described in the following chapter

Although the B-spline transform offers an efficieimbplementation of Morlet wavelet
analysis it is costly in its complex undecimatedrficcompared to the Fourier transform. This
cost is increased by the use of linear, as opptisedcular, convolution as is desirable for
short-time wavelet analysis. A partially decimatexhsform has been described which offers
mediation between low computational cost and umdels analysis artefacts such as
frequency aliasing and shift variance. Comparisafnthe cost of various types of transform
described in this chapter have been presented.stWthi undecimated transform offers the
best representation, the redundancy in the comgdexmated transform with the option to
only decimate some levels offers good shift invam&and frequency estimation properties
as well as adaptability to the processing condsahthe host system.

Finally, an overview of computationally cheap lIRrametric equalisers for re-synthesis of
the residual has been given along with a discussidrow the analysis parameters relate to
those of the equalisers. Two types of existingtdigequaliser have been presented along
with their relative merits. User adjustable parasrgtin addition to those automatically

controlled by the analysis, have been suggested.

Non-real time partial tracking for offline or rete oscillator bank resynthesis has been the
subject of a great deal of research throughoulatstethirty years. Chapter 4 of this thesis has
built on and extended knowledge in the specifi@asé non-stationary identification and
description of sinusoids for frame-by-frame trackifhe general application of wavelets to
audio residual modelling for control of equalispresented in this chapter is entirely novel
and is, therefore, less mature. In particular ®itwork is needed to better relate the wavelet
split frequency difference to the underlying comgain bandwidth. For example, with a
better understanding of how these two are reldtedhtagnitude correction of section 5.4.2
can take account of the component width in additmthe measured magnitude. In addition
to such further research, investigations into ayexessing areas outside of the specifics of
short-time residual modelling may well yield promgs applications of such an approach to

analysis and synthesis of audio.
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Much of the new work presented here has relatetig¢aextension of the B-spline wavelet
transform to time-frequency analysis and analyg$istso behaviour for simple short-term
signals such as stationary sinusoids and impulSks. analysis and resynthesis system
described in the next chapter offers an opportutatgee how it performs on ‘real world’

signals.
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6 AFRAMEBY FRAME SPECTRAL MODELLING SYSTEM

6.1 Introduction

The previous two chapters of this thesis have destmew techniques for using Fourier and
wavelet analysis to produce non-stationary singadd noise based models of sound. This
chapter puts these new techniques into a practipaljcation-based context by describing a
frame by frame spectral modelling system which udes sinusoidal identification and
description methods described in chapter 4 fordderministic part of the signal and the
complex wavelet modelling described in chapterrilie residual part. The proposed system
uses time-variant sinusoidal oscillators for systhef the deterministic part of the signal
and a noise source filtered by time-variant parametjualisers for synthesis of the residual.
This ‘additive plus subtractive’ synthesis methdfkis a model which is familiar to many
musicians since it is rooted in the well known amderstood audio studio techniques for the
direct generation and modification of audio spectdditive synthesis and parametric
equalisation. Since this model offers direct ac¢eshe mean instantaneous frequency of all
its spectral components shifting the pitch of anglbof those components, independently of
each other if required, is a trivial matter. Thipé of model also lends itself to other creative
sound transformations such as cross synthesis@rtcotover higher level sound attributes

such as ‘noisiness’ and spectral spread.

A primary motivation for this research has beenntgestigate the possibility of quasi real-
time spectral modelling (as opposed to processihgudio. Quasi-causality is addressed by
the ‘frame by frame’ method for separating sinuabicomponents from the residual. The
quality of sinusoidal/residual separation for a hemof different sounds, of both acoustic
and synthetic origin, is evaluated. To assess Huwsvexecution time constraint can be
negotiated in a real-time system the computati@most of different algorithms within the
system are discussed and quality-cost tradeofiwitbesl. All of the files used to produce the
MATLAB implementation of this frame by frame spedtmodelling system are provided in
Appendix A which is a CD-ROM. Results for this irmpientation and system testing have
been performed on a PC using a 1.6 GHz Pentiumddessor with 1 GB of RAM.

6.2 System design goals
The primary goal of this spectral modelling systsnindicated by its nameeSynth That
goal is the frame by frame output of high-fidelaydio imitations of input sound signals.

These imitations are generated by digital addiimd subtractive synthesis using the model



parameters derived from time-frequency/scale arsatjata. The model is important since it
is this which provides the parameters for soundsfiamation and the fidelity of imitations

Is important since this demonstrates the suitghdftthe model to the input sound and the
quality of the analysis techniques employed. EY@ugh the analysis happens on a frame by
frame basis the system is designed so that systbesurs on a sample by sample basis so

that the temporal location of events is as indéferto frame boundary locations as possible.

A secondary goal is that, in computational terrhg, $ystem is efficient and offers some
mediation between resynthesis quality and compartaticost so that it can be used in a real-
time context such as a traditional recording studitive performance. Since the processing
power and amount of RAM within computer systemsasstantly increasing a system which
satisfies the causal but not the ‘execution in ticenstraint for real-time processing on

currently available hardware still offers the paigifor a future real-time implementation.

As is the case for many other spectral modellirggesys, such as SM&Synthis designed

for use with monophonic (in the ‘single note’ sénisgut sounds with a minimum spacing
between individual sinusoidal components determibgdhe frequency resolution of the
analysis. The system is designed for use with Calityuaudio since for many applications
this offers sufficient fidelity and output sounds aeady for distribution in a widely accepted

digital audio format without further processingformat conversion.

Taking the lower frequency limit of human hearireglte 20 Hz which corresponds to a
period of 50 ms an obvious choice of frame lengthai spectral analysis system for
processing audio sampled at 44.1 kHz is 2205 samplewever this introduces a clearly
perceptible delay between input and output whiclesdoot provide a quasi real-time
processing experience. Much shorter frame lengffies much lower latency but at the cost
of increased minimum spacing between sinusoidalpoorants. It has been proposed that the
maximum acceptable time gap between an input geanat a computer system’s response to
it is as low as 10 ms [Wessel and Wright, 2002] ésv this gives a minimum spacing
between components of over 400 Hz which would Befiitient for a wide range of sounds
with closely spaced partials, particularly thosehwa low fundamental frequency. The
compromise chosen here, and adopted for the rqa@é&nted in the previous two chapters,
is a frame length of 1025 samples (23 ms) whiclegi@ minimum spacing of just over 100
Hz. There is a perceptible delay between gestuleoatcome at this latency which manifests

itself as a ‘softness’ or ‘spongeyness’ but notatislocation sufficient to seriously disrupt
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the relationship between cause and effect for axperienced usér The modelling
techniques presented in this thesis can be eafdlgtad to different frame lengths, although

the effectiveness of the model for different souwdbkvary with frame length.

In fact the processing delay is determined by ltbéhanalysis and synthesis frame lengths.
For ‘transform followed by inverse transform’ preseng the delay between input and output
is the analysis frame length, since the output ésumverlap, so the output and input frame
lengths are equal regardless of the overlap fabta.system such asSynthwhere there is

no overlapping of synthesis frames their length fanction of the analysis frame length and

the overlap:
— Nanalysis
Nsynthesis_ 0 (6 . 2)
where Ny . and N, are the lengths, in samples, of the frames@nsl the overlap

factor. This reduces the delay between input angdudisince, where the overlap factor is

greater than 1, the synthesis frame (which canutgub immediately after the current input

frame has been analysed) does not begin at sangfléh& corresponding analysis frame but
somewhere nearer the centre. For example, withragflength of 1025 and an overlap of 2,
the synthesis frame will be 512 samples long wihfirst sample corresponding to sample
number 256 in the analysis frame and its last saroptresponding to sample 768 in the
analysis frame. Thus the delay is reduced from Ha@8ples to 769 samples. This example is
illustrated in figure 6.1.

! Musical performers can adapt to latency betweestuge and audio output. A common example of thisipe
organs which can have detached consoles far remda@8dmetres in some cases, from the sound praducti
mechanisms. Inexperienced players will often inmtduily increase their playing speed since they tleat the
latency is in their gesture not the sound productiwhereas a performer who hadaptedto the specific
instrument can learn to play with a steady temspiie a large time lag. 200
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Figure 6.1: Temporal relationship between contehtsverlapping analysis frames and their corregpug
overlapping synthesis frames (top) and their noeHaypping synthesidrames (bottom). The analy:
frames are shaded white, the synthesis frames grethe bottom example (theeSynthcase) there is
smaller delay between input and output samplet@srs by the arrows.

This system has been tested and developed in MAT[M&hworks, 2006]. The system is
described by a single ‘.m’ file with a number ofosuinctions within it to aid readability.
Whilst MATLAB offers excellent design and testimgpts, routines written as m files do not
execute as fast as identical routines written iloveer level language like C. In order to
improve the execution speedrefSynthbottleneck sub-functions have been re-written &sC
MEX (MATLAB executable) files however their ‘m’ coterparts have been retained in the
code listing to aid understanding of how they waviEX (‘MATLAB executable’) files are
pre-compiled files (unlike text based m files) whican be written in C or FORTRAN. The
compiled files are dynamic link libraries (DLL fdg Some of the built-in functions in
MATLAB (such as convolution) have also been repamtlias MEX files. The C code used
to produce the MEX files is separately presenteldesé MEX files greatly reduce the
execution time ofeSynthfor a given input. Many of these MEX files offehandred fold or

greater increase in execution speed.

6.3 System overview

There are three stages in this audio process: sisatp produce model parameters,
interaction with those parameters to produce agt@msformation and resynthesis to render

the transformation as audio. The main parts of efthese stages are, in order:
Analysis:

e Zero-padded time and frequency reassigned FFT sisalfinput.
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» Parameter estimation and evaluation of sinusoidafimagnitude spectrum peaks by

evaluation of behaviour of time and frequency riggssent data at and around peaks.
* Removal of sinusoidal peaks from magnitude spectrum
* Linking of partial trajectories between current gmdvious frame.

» Production of time domain analytic residual siginain inverse transform of Hilbert

transformed residual magnitude and phase spectra.

« Complex B-spline wavelet analysis of residual armstingation of parameters of

underlying components.
M odification:

» Direct manipulation of one or more of: frequencyggnitude (sinusoids and residual

components) and bandwidth (residual components).
Resynthesis:

* Individual sinusoidal oscillators produce startirepding or continuing sinusoids

depending upon the outcome of the linking process.

« Parametric equalisers filter a noise signal. Thefftments for a given equaliser are
updated every time a new centre frequency and (nast are output from the

analysis for the frequency/scale band that it caver

 The outputs of each sinusoidal oscillator and patdm equaliser are added to

produce theeSynthoutput.

The following sections describe each of these stagmore detail.

6.4 Sinusoidal identification and extraction

The sinusoidal identification and description meh@mployed imeSynthare described in

detail in chapter 4. This section describes how g@neral method has been applied in this

specific process which is designed to obtain th&t beodel data for the least number of

calculations. These are minimised by using testsrafsoidality first which are simpler and

will lead to the rejection of a relatively large mber of components before further
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computational effort is expended on them by estimgaparameters such as amplitude and
frequency change.

The analysis begins with windowing of the datadomputation of the reassigned FFT. Odd
length zero-phase windows are used to provide stamiphase estimates and these are zero-
padded from 1025 to 8192 samples to provide ddfeismtly close to sinusoidal peaks for
estimation of non-stationary parameters. A secaaban for zero-padding is for greater
consistency in the spectral subtraction processiwld discussed later in this section. As
stated previously, the Hann window is used sinceffiérs an appropriate compromise
between main lobe width (which partly determinesiimum component spacing) and
relative side lobe levels. Also it has side lobé®ge peak level reduces monotonically with
increasing distance from the peak. This meansdidat lobes cannot be mistaken for main
lobes when using local maxima criteria to searahsiousoids. Once the three FFTs are
complete (using the Hann and its time and frequeanyped versions) the analysis proceeds
as shown in the diagram overleaf. The followingsadtions describe aspects of this analysis

scheme.

6.4.1 Calculating amplitudes of standard FFT data

Phase is only used for new sinusoids (i.e. thosehwdre born in the current frame). Since
the zero-phase windowing provides an estimate @fptiase at the centre of the frame, the
start phase of a starting sinusoid is extrapoldtech the centre to the beginning of the
synthesis using itsf and Af estimates. Continuing and ending sinusoids inhikeir start
phase from the sinusoid in the previous frame taclithey are linked. The start phase of
these sinusoids is the end phase of the previousaids’ plus the phase increment occurring
over one sample period at the start frequencyehtw frame. Therefore it is only necessary
to calculate a component’s phase if it has beefirooed as a starting sinusoid, significantly
reducing the number of arctangent calculations irequin each frame. However the
amplitude of every bin must be calculated sinceébadt are considered when searching for
local maxima. This analysis system considers anbiose amplitude is greater than its eight
closest neighbours to be a local maximum. Duriaggient portions of a sound there may be
a number of short-lived (heavily damped) sinuseuti®se relative phases contain important
information about the temporal evolution of the sduln this model this phase information
is retained for single frame sinusoids but discanfl¢he sinusoid continues into subsequent

frames since smooth continuation of the sinusofdsscframe boundaries is more important.
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Figure 6.2: Sinusoidal analysis algorithm.
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6.4.2 Estimation of amplitude weighted mean instantaneous frequency

As discussed in section 4.5 amplitude change widhirmame, such as at the onset or offset of
a sinusoid, combined with frequency change willdoce a bias in the instantaneous
frequency estimate which, in extreme cases, mayeplee amplitude peak as much as 74 Hz

from the true instantaneous frequency. This bigsadmeter is referred to here as the

amplitude weighted instantaneous frequeﬁgy. The bias introduced by the amplitude and

frequency change can only be corrected once thasamgters have themselves been
estimated which is a relatively costly process. thas reason bias correction is deferred until

as many components as possible have been rejagtad don-sinusoidality.

One of the criteria for rejection of a peak is Wiggtthe bin is contaminated by an outlying
component (see section 4.6 and [Desainte-CathandeMarchand, 2000]): if the estimated
instantaneous frequency lies outside of the bis iitot due to a sinusoid within it. However

the biasing effect of non-stationarities can predfrequency estimation errors of nearly 14

bins. Therefore, at this stage a bin is only rei@ctue to contamination ifampis a distance of

14 or more bins away from the centre frequencyhefgeak bin. Once the non amplitude
weighted f has been estimated at a later stage then theoredhtp between this parameter

and the centre frequency of the bin in which thakpesides is re-examined. The fractional
bin offset is calculated (from equation 3.132)tfiasd if this is greater than 14 the peak is

rejected. If the peak is not rejected the @Lpis calculated and stored.

6.4.3 Estimation of non-stationary parametersand variance of fit

A detailed discussion of the estimation & and Af and the use of variance of fit of RDA
data is given in sections 4.3 and 4.6. EstimatesAd, Af and o® are produced for each

remaining sinusoidal candidate. Candidates who%are not below the specified threshold

are rejected.

6.4.4 Estimation of non-amplitude-weighted mean frequency and correction of

amplitude
With the non-stationary estimates it is now posgstbl remove the biasing frorf_lampto give

the non-weighted mea and to correct the amplitude estimate as desciibedction 4.5.
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As a final test of sinusoidality the frequency eation (in bins) is compared to difference

between the peak bin centre frequency ig,\g If

f_amp_f_‘ <
B

wherek ., is the index of the peak bin, then the peak iscted. This rejects any peaks that

fam
kpeak - B :

(6.1)

do not exhibit sufficientAA and Af to account for the distance betweEar,;,pand the peak bin

and so are likely to be due to contamination bypuattying component.

6.4.5 Sinusoidal linking and classification

There are three types of sinusoid with@Synth starting, continuing and ending. Sinusoids
sorted into these three types are the result afssidal linking across frames. In a non-real
time analysis system (such as SMS) the linking ggsacan be iteratively ‘tuned’ to provide
the most appropriate representation for the typgoohd being analysed. For example short
lived partials can be eliminated and gaps in pamtacks can be interpolated if it is known
that a partial continues up to and away from thenf in which the gap appears. In a system
such ageSynthwhere the analysis and resynthesis happens ame fboy frame basis these
retrospective improvements to the spectral modehactbe made. This is one of the main
reasons for developing systems for testing thessidlality of a peak within a single frame
and for producing very high accuracy estimates rapldaude, frequency and how they
change within a single frame. The sinusoidalityitgsenables the right spectral components
to be considered at the frame linking stage, thl hccuracy estimates reduce the possibility
of mis-linking of components between frames andis€ontinuities at frame boundaries due

to incorrect evolution of amplitude and frequenegotighout the frame.

At this stage ofreSyntfs analysis the system has decided which peak&annagnitude
spectrum are due to sinusoidal components. Atitbednalysis frame there are no sinusoids
currently in existence since there are no previoasies so all sinusoids are classified as
‘starting’. Since the previous analysis providetnegtes of exponential amplitude and linear
frequency change the synthesized partials can evnlthis way during the synthesis frame.
For example, after just one frame of analysis heenlproduced a frame of non-stationary
sinusoids can be synthesized without requiring cors@ frame of analysis with which to

interpolate amplitude, frequency and phase betwigearder to avoid onset discontinuities
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starting sinusoids are forced to ‘ramp on’ regassilef their AAestimate. InreSynththis
ramp on defaults to a 96 dB exponential increasamplitude, the amplitude of the final
sample of the synthesis frame being that preditecdcombining theAA and amplitude
estimates. For example a starting sinusoid that éstisnatesA=1 and AA= 48 dB is
predicted to have an end of synthesis frame angditof approximately 5.5. In this case
AAis set to 96 dB and\ is modified so that the end amplitude is still.5S[Bis ensures that,
in a 16 bit system, there is no amplitude discaiitynat the start of the frame and the
possibility of amplitude discontinuity for this sisoid between the current frame and the next
is minimised. The disadvantage of this fixed rasiphiat it can delay the onset of sinusoidal
component since a 96 dB exponential increase ifime focuses energy at the very end of
the synthesis frame.

At the end of each frame the end frequency andeplodseach starting and continuing

sinusoid is stored for linking analysis in the négme. In the subsequent frame the start
frequency of all sinusoids are calculated from éséimates off and Af . For each start

frequency value in the current frame the previoamg’s sinusoids are searched for an end
frequency value which is close enough for the sidssto be linked. A difference threshold
is set below which linking can occur. Because @& kigh accuracy of the iterative RDA
technique this threshold can be set low enough tidy a very small range of end
frequencies has to be searched for each startedneguoften with no more than one or two
potential candidates which greatly simplifies thikihg process. Despite this simplification
there is still the potential for a current framausioid to be linked with that of a previous
frame before the best (closest) link has been foWitken a better link is found the current
link must be broken and replaced. This breakintheflink leaves an unlinked sinusoid from
the previous frame which may still be close enot@h current frame sinusoid for linking,
therefore the linking process must be repeatedntbthe second best choice of link, if one
exists, for this sinusoid and so the linking praces run twice. Figure 6.3 illustrates the
decisions made in the linking process.
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Figure 6.3: Sinusoidal linking algorithm
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6.4.6 Modification of sinusoidal model data for sound transfor mation

Once the deterministic signal has been describédrins of combinations of sinusoids with
non-stationary amplitude and frequency parameteranymtransformations become
straightforward. Pitch shifting independent of tinge achieved by multiplying each of
the f and Af estimates by the shift ratio (e.g. 2.0 for an umlsavctave shift or 0.67 for a
downward shift of a perfect fifth). Harmonisatioancbe achieved by producing additional
sets of sinusoids, each of which represent an iaddlit‘voice’ in the harmony. The and
Af values for sinusoids in each additional set aredlaf the original input sound multiplied

by the pitch ratio for the given harmony. Since fimase of each sinusoid in the additional
sets will increment at a different rate to thatlw corresponding sinusoid in the input sound
the end phase of each additional sinusoid mustiddedsto prevent discontinuities across

synthesis frame boundaries.

Cross synthesis can be achieved in a number of wags as combining the amplitude
trajectories for a partial in one input sound withe frequency trajectories for a
corresponding partial in a second sound. With sarbplsample knowledge of amplitude and
frequency trajectories amplitude effects such aeguency dependent compression/expansion
of signals can be performed with great accuracyis & a key advantage of having a
parametric model of audio rather than just shorhtstationary magnitude and phase spectra:
transformations can be intuitively and straightfardly conceived making it much easier for
non-technical users to create their own transfaonat

6.4.7 Residual estimation by spectral subtraction

Serra’s SMS system uses time domain subtractioprémluce the residual; the entire
sinusoidal signal is synthesized and subtractewh fitte original input signal. An advantage
of this approach is that having a time domain regméation of the residual means that
spectral analysis of the residual can be performéd optimised parameters, such as a
shorter analysis frame, for what is assumed to B®ehastic signal. In a system such as
reSynthwhich produces output from input on a frame bynieabasis it is not possible to
employ this approach. Unless there is no overlawden frames (only possible with a
rectangular window) the synthesis and analysis ésamill be of a different length and so
short-time time domain subtraction is not availakiéher. ThereforereSynth employs
spectral subtraction to calculate the residual digithough the data is finally transformed

back to the time domain in analytic form after eitbtransformation in the Fourier domair21.1



Whereas SMS uses shorter windows to analyse tree dmmain residuakeSynthuses the

constant Q B-spline split wavelet transform desatilin chapter 5 with the same analysis
frame length as is used for the sinusoidal FFTrgoaero-padding. With a frame length of
1025 samples this offers ten frequency bands dfysisawhose width and time resolution

varies with centre frequency.

An assumption of SMS is “that the residual is fudlscribed by its amplitude and its general
frequency characteristics. It is unnecessary tp leiher the instantaneous phase or the exact
spectral shape information” [Amatriain et al, 2008ugmentations of the SMS model to
include a third signal component type (transieatynowledge that this assumption is not
valid in some cases [Verma and Meng, 2000]. Whtlss the case that for long term
stationary noise the phase spectrum does not combgiortant information the case for short
duration broad band (i.e. impulsive) componentthé both the phase and magnitude are
needed to retain perceptually relevant fast changgmporal detail. The spectral modelling
technique used for the residualreBynthis intended to be capable of capturing the tempora
detail of transient components and the spectrablugen of longer term stochastic
components. Since both the phase and magnitudeomfsinusoidal components remain
intact after spectral subtraction the inherent rigniinformation contained within these
components is passed onto the complex wavelet sisatgmbining both transient and long

term noise in the one model.

Time domain subtraction is a straightforward andyvjgled the instantaneous frequencies
and amplitudes of the sinusoids are well preditiethe model, effective operation. Spectral
subtraction is a more complex process since indalidsinusoidal components are not
represented by individual points in the Fourier dom Finite length windowing smears
components into multiple bins and non-stationaetacerbates this: frequency change
widens the main lobe and amplitude change narrbesrain lobe but increases the level of
side lobes, increasing the spread of energy tamtigtins. A single sinusoid is represented by
a single complex number in the Fourier domain omlya very specific situation: a
rectangular analysis window is used, the analysedssid has stationary amplitude and
frequency and its frequency coincides exactly wita centre of an analysis bin (i.e. the
length of the analysis window is an integer mudtipf the sinusoidal period).

In preliminary investigative work undertaken foisthhesis into the combination of Fourier

and wavelet analysis a spectral subtraction tectenigas developed for use in a transform
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based thresholding processjavethresh This technique used knowledge of the window
power spectrum to predict the contribution madeadipacent bins made by a stationary
sinusoid for a given deviation of the sinusoid'sguency from that of the bin centre [Wells
& Murphy, 2003]. This was necessary sind&avethreshused a critically sampled (i.e. non
zero-padded) FFT which produces large variatiorsniergy localisation around a sinusoidal
peak for different deviations of the mean frequefroyn that of the centre of the analysis
bin. A zero-padding factor of 8 is usedr@Synthand this over-sampling of the spectrum
significantly reduces the variation in energy legation. Figure 6.4 shows the relationship
between the deviation from bin centre and the nurabbins which would have to be zeroed
to reduce the component energy by 48 dB for a Handow for an eight times zero-padded
and non zero-padded FFT. The non-zero padded F&lires less bins to be zeroed to
reduce the component to the required level. Howdvere is significant variation in the
number of bins that have be zeroed to achieve ésgeatl degree of attenuation whereas this

remains constant for the zero-padded case.
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Figure 6.4: Number of bins zeroed to produce aenattion of -48 dB for a stationary sinusoid
versus distance from centre frequency of bin. Thmmarison is between non zero-padded and 8x
zero-padded FFTs.

Since the spectral data is available in zero-padioied there are two approaches that can be
taken to obtain a time domain version of the residdecimation in the frequency domain or
in the time domain. Figure 6.4 suggests that fauticiently zero-padded spectrum the
spectral subtraction process can be performed siemply by setting sinusoidal peaks and
adjacent bins to zero. Following inverse transfdaromadecimation in time is performed by
discarding samples beyond the time support of tmeyais window. Since the spectral

subtraction process can spread some of the rergatoimponent energy outside the support
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of the analysis window this also helps to reduce dleterministic energy in the residual
signal. The disadvantage of not decimating befmaesformation to the time domain is the
increased cost of the IFFT. The time domain dedonanethod is used ireSynthsince this

greatly simplifies the spectral subtraction procasd offers much greater consistency in the
relationship between the number of bins that areexkand the attenuation of deterministic

components.

Non-stationarity must also be accounted for in gpectral subtraction process. Frequency
non-stationarity causes a widening of the main lbbethere is little change in the energy
contained in distant bins. A very simple model loé trelationship between width in the
Fourier domain and amount of frequency change igl@&yad inreSynth the energy spread
in the Fourier domain is approximately equal to fileguency change that occurs during the
frame. For example a frequency change of two Qust pver 10 Hz for a 8192 point FFT of
a 44.1 kHz sampled signal) spreads the energytiwoadditional bins over the stationary
case, one either side of the peak bin). This ig #se stationary window spectrum were
convolved with a rectangular pulse which is thettvidf the frequency change. Figure 6.5
illustrates the number of bins, actual and predicthat need to be zeroed to produce an

attenuation of 48 dB for a given frequency change.
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Figure 6.5: Number of bins zeroed to produce agnatition of -48 dB for a non-stationary sinusoid
versus amount of intra-frame frequency change.

Amplitude non-stationarity can produce a significde-localisation in the Fourier domain of
a sinusoidal component. This is due to the locadisan the time domain that is produced by
the amplitude change; the greater the amplitudengdathe more impulse-like the

component becomes. The more impulsive a comporeaanbes the less energy it contains
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compared to a stationary sinusoid with the samek @emplitude. A positive amplitude
change localises energy at the end of the framenagdtive change localises energy at the
beginning of a frame. These are the parts of tmadrthat experience the greatest attenuation
when a window is applied. The lower energy in a ponent with non-stationary amplitude
combined with the attenuation introduced by the dewming process offsets the energy
spreading in the Fourier domain: although zeroingiveen number of bins produces less
attenuation for a component with non stationary lgoge this loss of attenuation is
compensated. This is illustrated in figure 6.6 Wwhghows the attenuation produced by
spectral zeroing of 30 bins and the attenuatiodyced by the amplitude non-stationarity. It
can be seen that the combined attenuation acttadls/with increasing amplitude change.
For this reason thé&A estimate for a sinusoidal component is not comsaien the spectral
subtraction process mreSynth

0 . T T T I

I I I
——Combined attenuation

S e Reduction in maximum energy
10| — —Energy reduction by spectral subtraction | |

[
[=]
T

|

Component energy (dB)
58
T T
\
\
|
\
|
|
! |

60 I | | I | | I | |
0 10 20 30 40 50 60 70 80 90

Amplitude change (dB)

Figure 6.6: Combined energy reduction for a sindisath non-stationary amplitude.

6.5 Complex wavelet analysisof theresidual signal

Much of the detail of the complex wavelet analysisployed inreSynthhas been given in
chapter 5. What follows in this section is a bagérview of its implementation.

After spectral subtraction, by zeroing bins cornitagnsinusoidal components, a Fourier
representation of the non-sinusoidal part of tigaai (the residual) remains. As discussed in
section 5.2 the complex wavelet analysis is peréaiy iteratively applying the same LPF
and HPF separately to the real and imaginary pdrise analytic signal. The analytic signal
is produced by Hilbert transformation in the Foum®main. Section 5.4.1 noted that the
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finite initialisation filters proposed in [Unser @i, 1993] do not produce the expected
behaviour at lower scales. Much improved initidlsa of the input sequence to the wavelet
analysis is achieved by multiplication with a1 order sinc function, which is the Fourier
transform of the continuousith order B-spline, in the Fourier domain. Since tesidual

signal is already in the Fourier domain the Hildeshsform and wavelet initialisation can be

simply and cheaply accomplished.

The real and imaginary time domain signals areinbthby IFFT. This produces zero-phase
8192 point rather than chronological 1025 pointuseges so they are reorganised and
truncated to produce the time-domain analytic dighlae real and imaginary sequence are
then separately analysed using the partially deeidhransform to produce the control data
for the parametric equalisers that are used tontbsgize the residual. The user has control
over the number of decimated and undecimated lameise analysis. The maximum total

number of levels for a frame length of 1025 samp&edg0. Reducing the number of

undecimated levels reduces the computational ddbeovavelet analysis.

6.6 Synthess

Additive and subtractive synthesis are two of thesmcommon and well understood
synthesis techniques available to the computetfel@ic musician. Additive synthesis is
used inreSynthto recreate the deterministic part of the inpghal and subtractive synthesis
is used to fashion the stochastic part from broaadnoise. ImreSynthboth syntheses are
performed on a sample by sample Hasifis offers flexibility but the computational ¢ds
greater than synthesis by inverse transform [Feted, 1993]. At the time of writingeSynth

is believed by the author to be the only heterogesespectral modelling system which
performs all synthesis in the time domain. Thedfelhg two sections describe how both
parts of the signal are synthesized. The final wiulmm reSynthis the addition of the output
from each of sinusoidal oscillators and noise egee.

6.6.1 Sinusoidal synthesis
The sinusoidal synthesis is performed by generatiegphase trajectories from theand
Af estimates, generating the sinusoid from these laga applying the amplitude envelope

derived from the Aand AAestimates. The MATLAB implementation calculates heac

2 Strictly this is only true in the non-partially dmated case since the parameters of equalisex tose
synthesize decimated scales are not updated exanyls, although the noise which they process idyred on
a sample by sample basis.

215



sinusoidal value from scratch rather than usingakup table. Experimentation on the test
PC has indicated that in both MATLAB and VST plug-iwritten in C++ there is still a
moderate speed advantage when using table lookpmtluce sinusoid values. For example,
within a VST plug-in DLL non-interpolating wavetablookup takes approximately 75% of
the execution time compared to direct sine calmriatHowever, MATLAB passes global
variables to multi-function ‘m’ files extremely sidy compared to C which negates this
advantage and actually makes a function which aesesuch a global vector execute much
more slowly. The sinusoidal synthesis sub-functi@ms been translated to a MEX file,
however the problem still remains that passingakdp array to a MEX DLL within the
context of a MATLAB main function is a relativelxgensive operation. HeSynthwere to
be implemented in a single DLL file (such as a 8udg-in) then wavetable lookup would
be the cheapest means of sinusoidal synthesis.

A key novel feature ofeSynthis that it is able to produce tracks of sinus@dsoss frames
despite the fact that it works on a frame-by-framasis. The only other system known to the
author that attempts streaming sinusoidal analgsidescribed in [Lazzarini et al, 2005].
However this system does not attempt to model wamesarity and does not act on a single
frame of data. Instead it uses a number of ‘tramkig’ across already acquired frames which
introduces considerable delay (relative to thate®yntl). The partial tracking imeSynthis,

to a certain extent, implicit in the high accuraogn-stationary sinusoidal modelling
described in chapter 4. Fourier data produced lgng term sinusoid that exists across
multiple frames will produce model data that praskiagreement between the amplitude and
frequency at the end of one analysis frame andéginning of the next. If it does not then
there will be a discontinuity that will manifessaif audibly as a click at the output. There is
no amplitude or frequency interpolation across #dboundaries at the synthesis stage of
reSynth The only explicit ‘fixing’ of the model data it¢ derivation of the start of frame
phase for a continuing or ending sinusoid from tfahe previous frame sinusoid to which it
is linked. This phase matching uses the informapooduced by the inter-frame linking
process (described in section 6.4.5) to determowe phases in the current synthesis frame
are determined. Therefore the phase trajectoriepi@cewise quadratic and the amplitude

trajectories are piecewise exponential.
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6.6.2 Residual synthesis

Synthesis of the residual part of the signal bewik the generation of a broad band noise
signal. Since a wholly stochastic (‘white’) proceBas no knowledge of its previous
behaviour there is no need to ‘link’ noise acrasenkes therefore at each synthesis frame a
new noise sequence of required number of samplgsnisrated ‘from scratch’. White noise

with a Gaussian distribution is produced by twouakerandom sequencél[n] andU,[n],

each the length of the synthesis frame. Theseambioed to produce the zero-mean output

noise sequenc&,[n as described in [DSP Primer, Rorabuagh, p.39]:

GJ[rl =cos( 27U, [n]){/-20% In(U,[A)  (6.3)

where o (with a default value of 0.5 ineSyntf) is the standard deviation of the output

sequence.

For a full level residual component the gain of gynthesis equaliser is set at 96 dB

therefore the level o6[n] is reduced by a corresponding amount so that siitlés actually

boosted by one or more of the equalisers it remb&lew the noise floor of the 16 bit
system. Where the output from the complex wavelatyasis is undecimated the frequency,
magnitude and bandwidth of the equalisers are epdatery sample. As discussed in section
5.7 this requires a large number of calculatiomefch equaliser at each sample, particularly
where the Orfanidis design is used. Also, MATLABdissigned for high speed vector rather
than scalar operations meaning that ‘one at a tpnecesses (such asdr’ loops) do not
execute quickly in this environment. For these oaasthe equalisation is performed by a
MEX function. In order to reduce the number of oédtions required at each equaliser
update the gain is fixed and the amplitude of tipui noise sequence is modulated by the
estimated component magnitude. Where the outpuysisas decimated then the equaliser
coefficients are only updated when there is newWyarsadata. The current implementation of
reSynthuses ten parametric equalisers. In order to cosgterior the doubling of magnitude
at each increase in scale in the analysis (seeefi§26) scale dependent attenuation of the

noise signal is performed at the input to each kspra

6.7 System performance

With an overview of system functionality in pladijs section presents examples of how

reSynthperforms on examples of different types of solwth synthetic and acoustic. The
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ability of the system to separate and describewifft signal components is examined. Many
of the examples discussed are provided in AppeBdof this thesis which is an audio CD.
Where the system models a particular sound or caemgowell then good quality pitch
scaling independent of duration is easily achielsgdmultiplication of the sinusoidal and
parametric equaliser centre frequencies by thengcédctor. Where the input sound is not

well modelled then, of course, plausible pitch isgpls not successful either.

All of the signals used are mono, 44.1 kHz withkhli6quantisation. Unless otherwise stated
the analysis frame length is 1025 samples and hdap factor is 2. Where there are time
domain plots comparing input and output the inhiepncessing delay between input and
output has been removed to make comparison betigegroral evolution of features easier.
This means that the sample numbers correspond &etplets in the same figure, but the

delay between input and output is not represented.

As has already been discussed, there are no gibetral modelling systems that attempt to
work on a frame-by-frame basis and the vast mgaft existing systems perform their
analysis offline once the entire signal has beejuiaed. Since this is a novel system there
are no others with which useful, direct comparisan be made. The following investigations
and discussions therefore report on the real-tipeetsal modelling capability of a system
which uses the novel signal analysis techniquesritbesl in previous chapters but they do
not attempt a comparison with existing spectral etloty systems since their design goals
are so different.

6.7.1 Sinusoids

6.7.1.1 Single sinusoid with abrupt onset and offset

Perhaps the most basic function that a sinusoidalnesidual modelling system can perform
is to correctly resynthesize a stationary inputisoid. Figure 6.7 shows the start of an input
1 kHz sinusoid and the start of the sinusoidal pathe output fronreSynthwith an overlap

of 2 and 4. The input sinusoid starts and endsplyrwhich poses a challenge to this system
since at this point the behaviour of this ‘statignainusoid is actually highly non stationary.
SincereSynthmodels sinusoidal onsets as an exponential funthie onset of the sinusoid is
smeared in time. Increasing the overlap reducesiiset time of the resynthesized sinusoid
and this more abrupt onset is closer in shapeatahthe input. Increasing the overlap factor
in reSynthimproves the time resolution of the resynthesiaetplitude trajectories but at
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increased computational cost. For example, inangasihe overlap by a factor of two

increases the number of frames that have to beiaeal by the same amount.
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Figure 6.7: Onset of input sinusoid (left), resysized output, overlap factor of 2 (middle) and
overlap factor of 4 (right).

The offset of the sinusoid is not synthesized a$ agethe onset. Figure 6.8 shows this part of
the input and output signals. It can be seen trad fframe length of 1025 samples there are
significant mismatches between the amplitudeseetid of one synthesis frame and the start
of the next around the offset point. This is duéhe start and end amplitudes of these frames
being incorrectly estimated since the overall atagk of the analysis frame is assumed to be
due to a sinusoid that has undergone exponerdifiler than abrupt, amplitude change. This
problem does not manifest itself at the onset beedhe onset coincides with an analysis
frame centre or boundary. Doubling the overlap dehice the level of the amplitude
discontinuities during the offset synthesis butéehis still significant distortion of the offset
which is audible as an increase in level of thekcheard at the offset. A more satisfactory
solution in this case is to reduce the analysismé#ength. This reduces the error produced by
the exponential extrapolation of the average framwlitude to the start and end of the
frames. The error is reduced since the extrapoladiccurs over a shorter range. This is
shown in figure 6.9. With a frame length of 513 aza overlap of 2 the amplitude
‘overshoots’ are reduced. Doubling the overlapinstanore energy at the offset but the
amplitude envelope is distorted. A 129 sample amlframe provides an output that best

matches the shape of the input at the offset staggeclear from this figure that, as expected,
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abrupt onsets and offsets of sinusoids are modeflech better when the frame length is

lower than the default setting of 1025 samples.
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Figure 6.8: Offset of input sinusoid (left), redyesized output, overlap factor of 2 (middle) and
overlap factor of 4 (right).
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Figure 6.9: Offset of resynthesized output sinuseiith a frame length of 513 samples and overlap
factor of 2 (left), frame length of 513 and overlaip4 (middle) and frame length of 129 and overlap
of 2 (right).

Where there are sudden onsets or offsets enerdyoevispread in the Fourier domain and
vestiges of these transient regions will exist ire tresidual spectrum after spectral
subtraction. This manifests itself in the noisepotifrom the system. Figure 6.10 shows the
onset in a windowed input frame before and aftecspl subtraction and its manifestation as

filtered noise at the output oéSynth The localisation of the output from the noisethgsis
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is much better than for the exponential onset sigusFor low overlaps this causes an
audible ‘double onset’ but at higher overlaps twe tsynthesis components become
temporally fused.
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Figure 6.10: Windowed analysis frame with sinusoitet at centre (top), residual analysis frame
after spectral subtraction (middle) and noise sgsithof residual (bottom). The frame in the bottom
figure is half the size of those above it but hesrbcentrally aligned.

6.7.1.2 Combination of Sinusoids with vibrato

A synthetic signal comprising five harmonicallyatdd components with a slow and wide
vibrato (2 Hz) is considered next. This signalddke ability ofreSynthto reproduce smooth
variations in frequency and properly link sinusoiiths a multi-component signal. The
magnitude STFT of the input and the output is shawrigure 6.11 and the estimated
sinusoidal trajectories are shown in figure 6.12o@arithmic frequency scale is used so that
the evolution of frequency trajectories can be rtyeseen. There has been no smoothing of

the trajectories, these are the exact linear segnaemived from the RDA analysis.

A number of short duration sinusoids have beentifiet by reSynthabove 5 kHz but these

are of very low amplitude and are therefore inaladib the final output. These are mis-
identifications of side lobes since there is nosaoin this signal. Whilst these are not
desirable they are few in number compared to theben of magnitude peaks which are
considered candidates at the start of the sinuisdisierimination scheme employed here. In
this example a total across all frames of 16,653simbe candidates are identified by the
‘local maximum’ test of which 15,631 (94 %) aree@pd during the following stages of the
discrimination methods described in this chaptet @mapter 4. The main difference between
the input and output is at the onset and offseéhefharmonic signal. In the final frame of
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figure 6.12 a high number of spurious sinusoids loarseen since the offset of the signal

does not coincide with an analysis frame boundary.
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Figure 6.11: STFT of input (top) and output (botjesignal. A Blackman-Harris 2048 point analysis
window with an overlap factor of 6 is used.
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Figure 6.12: Frequency trajectories produced bysiidal analysis part e€Synth The frame length
is 1025 samples and the overlap factor is 2.

When the vibrato rate is increased to 12 Hz thessiidal discrimination and tracking breaks
down for all but the fundamental. Figure 6.13 shaonegnitude STFTs of the input and
output for this signal. A shorter FFT length hasrbesed for this figure to properly capture
the fast vibrato. Figure 6.14 shows the partiadstdied byreSynth
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Figure 6.13: STFT of input (top) and output (botjaignal. A Blackman-Harris 1024 point analysis
window with an overlap factor of 6 is used.
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Figure 6.14: Frequency trajectories produced byssiidal analysis part s€Synth The frame length
is 1025 samples and the overlap factor is 2. Téguency axis is logarithmic.

It is clear from these figures that the sinusoid&icrimination and tracking is unable to
properly model the fast and deep vibrato in theuirgignal. Where there are gaps in the
sinusoidal trajectories or where the start andfeagliencies are not within the linking range
the resynthesized sinusoids are interrupted causegere audible distortion. The
performance is improved by raising the variancéd#hce threshold (VDT) and by reducing
the frame length. Figure 6.15 illustrates how thes@nges to the analysis parameters affect
partial tracking. With a frame length of 1025 biue tvDT raised from the default of 0.006 to
0.06 most sinusoids are correctly identified bug frame is too long to capture the fast

frequency changes in the signal and the trajectasfethe upper harmonics are corrupted.
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Reducing the frame length to 513 aids both ides@ifon and parameter estimation but at the
default VDT some gaps in the upper partial trajeesoremain. With a shorter frame and a
raised VDT the five harmonics are correctly ideatf tracked and synthesized. The cost of
raising the VDT threshold is that more signal congrds are incorrectly identified as being
sinusoidal however this is offset by reducing tteerfe length. For the top plot in figure 6.13c
a total of 14,902 local maxima are identified ofieth73.7% are rejected. For the middle plot
there are 16,530 maxima of which 85.0% are rejeeted for the bottom plot 78.0% of
16,530 are rejected.
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Figure 6.15: Frequency trajectories produced byssiidal analysis part s€Synth The frame length
is 1025 (top) and 513 (middle and bottom). The arae difference threshold is 0.06 (top and
bottom) and the default setting of 0.006 (middié)e frequency axes are linear.

6.7.1.3 Residual analysis of mis-classified sinusoids

If reSynthfails to properly classify a sinusoid it will reman the residual and the system
will attempt to model it with filtered noise. This shown in figure 6.16 for a 1 kHz sinusoid
lasting 1 second. The figure shows the first 20@@as of the time domain input and output
and the long term average magnitude spectrum oétitiee output. A pitch which matches
that of the input can be clearly discerned in thgpot although it has a ‘grainy’ rather than a
‘pure’ quality which is due to the stochastic natof the input to the equaliser. The random
variations in the output can be clearly see in thiedle panel of the figure although
variations in amplitude are smoothed somewhat e tdomain smoothing effect of the
equaliser which is highly recursive since its bartkdws narrow. Whilst such a situation is
certainly not ideal this example does demonstiaesiktent to which the residual part of the

system can adapt to long term narrow band compsn8irice the analysis filters are spaced



an octave apart where more than one sinusoidifalissingle analysis octave the bandwidth
will extend to encompass both sinusoids and thepoco@nts would not be well modelled by
the system. They would appear as a single noisepaoemt whose bandwidth would

correspond to the distance between the two.
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Figure 6.16: Input stationary sinusoid at 1 kHpJtaesynthesized as residual signal (middle) &ed t
normalised long term average magnitude spectrutheofesynthesis (bottom).

6.7.2 Broad band component types

This section describes how the system performstiar important types of broad band
component: impulses and long term stationary ndispulses are best analysed by filters
with compact support which are able to follow sudd#nanges in a signal. In contrast
stationary noise is best described by filters wothger support which are able to smooth the
sample-by-sample fluctuations of a stochastic s$ignaorder to derive its long term
parameters. This system is better suited to thedosince sinusoidal analysis is performed
before that of the residual and it is inherentlgrstterm since it divides the signal into short
frames.

6.7.2.1 Impulses

Since the Fourier transform of an impulse contaieslocal maxima no sinusoids are
identified. Therefore such a component occurringsmation is synthesized purely as a
residual part of the signal. Figure 6.17 showsr#synthesis of a series of single impulses
each consisting of a single transition from O toarid back to 0 again. The output is not

identical for each impulse since the input to titters is noise and there is some smearing in
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time of the impulses due to the support of eacthefanalysis filters and synthesis equalisers
being greater than 1. It can be seen that therelmayccasions when the peak amplitude of
the synthesized impulse exceeds that of the otigimaulse. This occurs when the impulse in
the input signal coincides with a high noise leatlthe synthesis stage. In this case no
clipping distortion would be generated since therskioot is only one sample in duration
although the spectrum of the distorted impulse ddnd altered slightly. Nevertheless it does
highlight the possibility for occasional amplitudeershoots in resynthesis which may
require some subsequent limiting or overall leveduction to prevent brief instances of

distortion at the output of the system.
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Figure 6.17: Resynthesized sequence of impulses.

6.7.2.2 Long term stationary noise

When a long term broad band component such as whise is analysed, local maxima in
each Fourier frame will occur. The position of #a@saxima will shift randomly from frame

to frame enabling an algorithm which assessesligyaear-stationarity across a number of
number of frames to reject such maxima as beingtdwnusoids. Such knowledge is not
available to a frame-by-frame system suchr@Synth requiring subsequent stages of
sinusoidal identification within the current frame correctly reject such peaks. The
algorithm described in chapter 4 is only partialyccessful in this although it does offer a
considerable improvement over one which classietely on the basis of whether a
component is a local maxima. For a 3 second tgaakcomprising white noise of constant
amplitude 44 700 local maxima are identified of efhv3.2 % are rejected. Where the frame

length is reduced to 513 samples only 40.0% of8Blde rejected. 926



Where peaks are not rejected they are synthesizetdst term sinusoids which ramp on and
off (since a link is rarely found between framesjl dhis can be heard as ‘birdy noises’ or
‘bubbling’ in the output. At the residual analysasd synthesis stage the bandwidth,
frequency and magnitude estimates also vary inngmedlictable way. Since the support of
the wavelet filters is lower than that of theiritpkhe magnitude can change more rapidly
than the bandwidth. Thus a sudden increase in megiwhere the estimated bandwidth is
still low can cause a large amount of energy tinfeeted into a narrow part of the spectrum
which itself causes similar audible effects to thiathe sinusoidal part of the synthesis. This
can be countered by smoothing the magnitudes & s@ale but this reduces the temporal
resolution of resynthesized impulsive componentshSmoothing is more successful where
the magnitude is finely sampled (i.e. where therdtile or no decimation in the wavelet

analysis). Figure 6.18 shows the time domain igmat output signals and figure 6.19 shows
the long term average Fourier magnitude spectrahese for this white noise signal.

Although some differences are evident in thesesptoterms of total energy and consistency
of time domain amplitude the fundamental audibied@nce is in the texture of the noise

which cannot be discerned from this figure.
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Figure 6.18: Time domain input and resynthesizegutufor a constant amplitude white noise input.
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Figure 6.19: Long term average magnitude spectriimput and resynthesized output from figure

The residual analysis/resynthesis system propasédested in this thesis is intended to offer
an intuitive model with adaptability between longdashort term broad band components.
Whilst impulses are characterised with much betiee resolution than would be possible
with the equivalent Fourier analysis it is cleaattthe system does not perform as well with
signals such as that just discussed. However thesagidality test employed does reduce the
number of mis-identified peaks which reduces thst @i the sinusoidal synthesis. One
possible solution to the lack of smoothness in ntada estimates for stationary noise,
whilst retaining the sharpness of transients, wdaddo perform some form of time domain
transient analysis on each frame prior to resi@umalysis to determine the extent to which
magnitudes should be smoothed. Where a transie¢tected there would be little or no
smoothing allowing the transient to be accurat@fofved in time. Where there are no
sudden changes in signal energy smoothing wouldpipéied that would produce a texture

much closer to that of long term noise.

6.7.3 Acoustic signals

Having considered basic synthetic signal compohggs the performance of this system is
now considered for examples of acoustic signalsceSthe system is designed only for use
with monophonic signals with partials which areajes than a given minimum spacing apart
only these types of signals are considered. Shoechaic recordings of flute, violin,

speaking voice and singing voice are surveyed.eDsfft aspects and parameters of the

system are discussed as relevant to the partiexéample.
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6.7.3.1 Flute

The flute is a cylindrical metal pipe instrumentigfis open at both ends such that its modes
of vibration contain all integer multiples of thendamental frequency of vibration of the
column of air that it contains. This vibration i®ogduced as a result of interaction between the
column of air and a jet of air produced by the perfer [Rossing, 1990]. Whilst the majority
of energy in the acoustic signal of a flute is dodarmonic vibration, noise in the form of
turbulence around the mouthpiece and its resonégraiction with the pipe is also audible. In
this example a single note G4, which has a fundssmhehapproximately 392 Hz, is played.
Figure 6.20 shows the time domain waveforms ofitipait and resynthesized output and
figure 6.21 the magnitude STFT of these signale Upper frequency of the STFT plots is

limited to 10 kHz so that lower partials can beadi distinguished.
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Figure 6.20: Time domain waveform of a flute ndtg} and resynthesized output (bottom).
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Figure 6.21: Magnitude STFTs of input (top) andtkgsized output (bottom) signals shown in figure
6.20. A Blackman-Harris 1024 point analysis windeith an overlap factor of 6 is used.

Whilst the output is audibly and visually distingiable from the input the important
temporal and spectral features are captured andhidje amplitude, lower frequency
harmonics are correctly linked as continuing simsohroughout the steady state portion of
the note. Air turbulence components are plausibtydetied by the residual part of the
system. It is at the onset and offset that diffeesrbetween input and output can be seen and
heard. During the offset some low level discontiesican be heard where the trajectories of
higher partials are broken up. At the onset thassiids ‘switch on’ almost instantaneously in
the input and this can be heard as a distinct ohtich is fused with the start of the
harmonics. At the default frame length and ovetlsip onset is smeared in time and the
transient which is synthesized in the residuablow in level and is temporally dislocated
from the sinusoidal onsets. Reducing the overlapichvreduces the synthesis onset and
offset times for sinusoids, does not restore thek elhich suggests that the onset is captured
and smeared in the Fourier analysis rather thamgliatroduced in the synthesis. In this case
shortening the frame length to 513 samples doegnpmbve this aspect either. Close-ups of
the time domain waveform input and outputs at theebare shown in figure 6.22.
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Figure 6.22: Time domain waveform of note onset ifggut (left), synthesized output for 1025
sample analysis frame (middle) and 513 sample aizafsame (right).

6.7.3.2 Violin

The violin is a stringed instrument. When it is llithe string oscillates rapidly back and
forth as it successively and rapidly held and reteaby the hair fibres of the bow as the bow
is pulled across it. This causes the string to preda sawtooth time domain waveform which
is then filtered by the complex resonant structfréhe instrument’s body. Thus a typical

bowed violin note produces a large number of oddl @men harmonics of relatively high

amplitude giving it its bright tonal quality [Rosgj, 1990]. The exact nature of interactions
between bow and string which produce vibrationcamplex and can be chaotic giving rise
to micro fluctuations in the parameters of the harios produced [Palumbi and Seno, 1998].
The note analysed here is G4. Figure 6.23 showsnigedomain waveforms of the input and
output and 6.24 the magnitude STFTs of these sigAgain, the upper frequency limit is 10

kHz so that harmonics can be clearly seen.
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Figure 6.23: Time domain waveform of violin noteg} and resynthesized output (bottom).
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Figure 6.24: Magnitude STFTs of input (top) andthesized output (bottom) signals shown in figure
6.23. A Blackman-Harris 1024 point analysis windaith an overlap factor of 6 is used.

Here the resynthesis is not as successful asfdrishe flute recording. There are some
interruptions of the sinusoidal trajectories evem fow harmonics which are at high
amplitude. This is particularly noticeable at trenonset and for the third harmonic and is
due to sinusoids being rejected as noise. RaigiegMDT reduces the number of these
discontinuities but at greater computational expesmce this also causes more higher
frequency noise components to be modelled by sidsis®y raising the VDT from its

default of 0.006 to 0.06 much of the ‘bubbling’ sad by sinusoids switching on and off is
232



reduced and it is almost completely eliminated vatlvDT of 0.6. This is partly due to
missing links in trajectories being restored. ltalso due to new sinusoids in the spectral
vicinity of partial breaks apparently masking thdseaks and creating a perception of a

continuing sinusoid even where there is a break.

Raising the VDT has the effect of rendering the eh@most wholly sinusoidal. At a VDT
of 0.006 69.5% of peaks are rejected out of a wft&2 768, at 0.06 this figure is 49.8 % and
at 0.6 only 33.2% are rejected. Where the VDT thoksk is high the residual component
contributes little to the output however it doesteibute audible high frequency noise which
does enhance the plausibility of the resynthesisilatthe identity of the synthesized output
is clearly that of a violin there are still someddale disturbances such as small clicks, visible
as the vertical striations in figure 6.24. In teecific case a higher VDT produces a more
plausible output but at a higher computational ch& to the increased number of sinusoids

that must be synthesized.

6.7.3.3 The human voice

Sound is produced by the vocal organ through tbheation of the vocal folds, which are
driven by airflow from the lungs, within the resoma&avity of the vocal tract. The vibration
of the vocal folds is a result of Bernoulli effeat air from the lungs passes between them.
The folds open as a result of air pressure and ¢hese again due to the drop in potential
energy, and hence pressure, as air passes thrbaghpace between them at increasing
velocity. The folds close more rapidly than thegoproducing a series of pulses producing
a spectrally rich ‘buzzing’ excitation [Howard aAegus, 1996]. The spectral envelope of
this excitation is then shaped by the vocal trauctv acts as a time variant filter. In this way
the timbre of the voice can be continuously vategdroduce different vowel sounds. Voiced
speech is produced when the vocal excitation isedby the vocal folds closing and
opening. Resonant peaks in the response of thd traca that combine to produce vowels
are known as formants. Unvoiced speech is genevated the vocal folds are permanently
open and are excited by air turbulence producifgoadband excitation. Consonants are
produced by various forms of articulation, for exdenby the teeth and tongue. Plosives are
produced by momentary blocking of the flow of aithin the vocal tract and fricatives by
constriction of air flow to produce turbulence. Téfere typical vocal sounds consist of short
term stationary harmonic, as well as more stoohastioadband components [Rossing,
1990].
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The first vocal sound considered is an ‘ah’ vowahg by an adult male at a pitch of G3
(fundamental of 196 Hz) with some vibrato. Time @mplots of the input and output
signals for the default settings of overlap, fraleregth and VDT are shown in figure 6.25
and magnitude STFTs of these signals are showgunef6.26.
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Figure 6.25: Time domain waveform of a sung malealtah’ (top) and resynthesized output (bottom).
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Figure 6.26: Magnitude STFTs of input (top) andthesized output (bottom) signals shown in figure
6.25. A Blackman-Harris 1024 point analysis windwith an overlap factor of 6 is used.

The overall temporal envelope of the input is wakserved and much of the harmonic
structure is intact in the output but there ararckreaks in some of the partial trajectories.

These occur mainly at the onset of the note antienregion between 4 and 5 kHz where
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partial amplitudes are lower due to a dip in thenfant structure in this region. Also there is
a low frequency component around 30 Hz which octlumsughout the input which is not
represented in the output. This component is duant extraneous rumbling noise which
occurred during the recording. This is not classifas a sinusoid and rapid variations in the
frequency and split estimates for the lowest egaalspread energy from it into outlying
parts of the spectrum rather than localising eneéngthis lowest band. Again, raising the
VDT does fill in some gaps in the partial trajecsrbut at the cost of synthesizing more
noise components with sinusoids. Reducing the amalframe length to 513 samples
produces a seriously corrupted output as the spdmtween harmonics is then below the
minimum spacing for the sinusoidality test (dis@dss section 4.5.3).

The final acoustic audio example is the utterargystem output” spoken by an adult male.
The fundamental frequency of vibration varies tlgloout this example, as usually happens
in speech where pitch is varied to produce prosobaracteristics. The utterance contains
fricatives in the ‘s’ of “system” and transientsthre form of ‘' stop consonants in the word
“output”. The time domain input and output is shownfigure 6.26 and the magnitude
STFTs of these signals in figure 6.27.
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Figure 6.27: Time domain waveform of male utterarmystem output’ (top) and resynthesized
output (bottom).

235



10000

5000

Frequency (Hz)

06 0.8 1 12 1.4
Time (s)

0.2 0.

10000

5000

Freguency (Hz)

s .i. ': L f"’,‘: sak
08 1 12 14
Time (s)
Figure 6.28: Magnitude STFTs of input (top) andthgsized output (bottom) signals shown in figure
6.27. A Blackman-Harris 1024 point analysis windeith an overlap factor of 6 is used.

As can be seen from both the time domain and sgeglots there are some significant
differences between the input and output and ttedligibility of the utterance is reduced in
the output. The ‘s’ sounds are highly sibilanthe pbutput and the ‘t’ sounds are smeared in
time making them sound more like fricatives. Sindsare not properly assigned at the fast
onset of voiced speech at the start of the wordglattl and the residual contributes a burst of
noise at this point which is not appropriate ts tiype of component. Raising the VDT to 0.6
improves the quality and intelligibility of the qaut but with some ‘birdy’ noise and clicks at
sinusoidal offsets and onsets still audible. Wit YDT at this level the residual contributes
very little to the output and the model is essdigt@nusoidal. Therefore, in its present form,
the residual analysis and resynthesis system isuitéd to the modelling of broad band

speech components.

6.7.4 Computational performance

A prime motivation for the development and testofigalgorithms described in this thesis is
to enhance the possibilities for quasi real-timecs@al modelling of audio signals. One
aspect of this is improving the ability to makenfixby-frame decisions on how to model
different components and how to link them betweames. The second important aspect is
whether the methods used to make these decisionexezute quickly enough for real-time
operation. AlthouglreSynthhas been implemented in MATLAB as an ‘offline’ (neeal-
time) process it is hoped that many of the algorght uses will form the basis of a real-time
process in the future. This section discusses antpares the computational cost of different

parts of the system. SinceSynthis a self contained function each time it is rheré are a
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number of initialisation steps that need to be deted such as loading the two dimensional

arrays forAA and Af estimation and window generation.réSynthwere to be converted to

a real-time processing environment such as a V&@-iol DLL these initialisation steps
would occur only once when the plug-in is firstrlabed in the host DAW. Therefore this
section considers only those tasks whieBynthcarries out on a frame by frame basis. Three
of the example audio signal types previously disedsare considered for this analysis: the
single stationary sinusoid since this is perhapsntiost trivial signal that such a system can
encounter, the long term white noise since, asudsad in section 6.7.2.2, this has proved to
be a challenging signal type for the system to rhadd the flute recording, since this is an
example of a real world signal which the systeralke to model well. The data presented in
this section has been generated using the MATLABfiler tool. Although this tool
actually adds a processing overhead to functioasatyses, when runnirrgSynthwith the

profiler on the execution time of the whole systsronly increased by 0.9 %.

The profiling has been performed with the defaeltisgs of frame length (1025 samples)
and overlap (2) and with the fastest wavelet amaljisundecimated and 9 decimated levels).
The following stages in the analysis and resynthesie profiled and are plotted as
histograms, one for each audio example, with thatcn of the audio plotted as a dotted

line. These histograms are shown in figure 6.29:
1. Windowing of data and FFT for producing magnityolease and reassignment data.
2. Magnitude estimation, local maxima identificatiardanitial frequency estimation.

3. Time reassignment data fittindA, Af estimation and variance difference testing.

4. Amplitude correction and final frequency estimation

5. Sinusoidal resynthesis.

6. Spectral subtraction, complex split wavelet analgsid estimation of EQ parameters.
7. Parametric equalisation.

8. Total computation for stages 1 to 7.
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Figure 6.29: Computation time for different stagéseSynth The inputs to the system are a 1 second
stationary sinusoid (top), a flute recording (m&dand white noise. The dotted line indicates the
duration of the audio being analys

In all cases the sinusoidal analysis and resyrghesiompleted in less time than the duration
of the audio signals indicating that on currenthgitable hardware this part of the system can
certainly be implemented in real-time. This is atke case for the subsequent complex
wavelet analysis. However, this part of system da®sume a considerable amount of the
‘real-time’ available for each of the example saaindpproximately 20% of this time is
spent on convolution operations, the rest on magdaitbandwidth and frequency estimation
of this data. The convolution for the wavelet asayis performed by a MEX DLL which
uses a convolution function optimised for the Irfeehily of processors [Intel, 2000]. The
arctangent and subsequent phase unwrapping operagie also performed by a MEX
function. The rest of the tasks within the main ®lav analysis functions are not
implemented as DLLs since they use mainly vect@raions. These results make it clear
that implementation of all of the wavelet modellitgsks in a lower level language is
necessary if such a combined sinusoidal and rdsahadysis system is to run in real-time on
commonly available general purpose hardware. In woest case example (the flute
recording) the system is able to complete the aisand resynthesis in just under twice the
time duration of the actual signal.

6.8 Conclusions
This chapter has demonstrated a system for speowdklling of audio that implements
analysis methods developed in the previous twotelhsepAn overview of how such a system

functions has been given and of its performancth oterms of quality of audio output and
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execution time. The results obtained with the sysiie its present form demonstrate that a
real-time partial tracking system that performslwel many, but at present certainly not all,
types of sound can be realised. They also indittae the wavelet analysis and equalised
noise resynthesis method described in the prevohiapter show good adaptation to and
representation of impulses in both the time anduemcy domains. As far as the author is
aware, this is the first heterogeneous frame-bméraspectral analysis system for wholly
sample-by-sample time domain synthesis which has bevised. The potential inherent in
the underlying model, which offers continuous (witthe limits of a sampled audio system)
control of the instantaneous frequencyatif of its components with good time resolution
beyond that of the homogeneous bandwidth enhanedrs of [Fitz and Haken, 2002], is

for highly flexible real-time and time variant gitscaling of all those components. However,
there are improvements to the current system whrehrequired to improve fidelity and

fusion of components for some types of sound.

The combination of complex Fourier and wavelet ysialshows promise but there is much
scope for future work. In particular, additionalafysis which assists in distinguishing
between short and long term broad band componsntedaded to control smoothing of the
equaliser gain in order to provide more plausildeyntheses of sounds such as speech
fricatives, breathing and filtered noise generatased in widely available subtractive
synthesizers. The sinusoidal part of the systemldvanenefit from the inclusion of a
hysteresis option in the partial identification.i§hvould prevent long term partials from
turning off during frames where they become comdgiy other components. If a partial was
established (i.e. had been ‘continuing’ for a sfedinumber of frames) then the system
could be forced to wait for a number of frames befewitching the partial off. The cost of
this would be poorer time resolution at note ofsefhe differences in partial tracking
performance for the violin and flute examples sstjtjeat a greater understanding of how the
acoustics of musical instruments affects the silasaletection algorithm is required. An
area of future investigation of particular interéstthe author is the examination of the
relationship between high quality physical modefsaooustic instruments and spectral
models of the audio output they generate, idemtfywhich aspects of acoustic systems

affect the sinusoidality and ‘stochastic-ness’nef butput.
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7 CONCLUSIONS

7.1 Introduction

This thesis has investigated the possibility ofdai@ng spectral modelling data in real-time
using a combination of Fourier and wavelet methdd®e prime motivating factor for this
research has been the lack of real-time analysis tvailable in existing spectral modelling
systems, which limits the application of such tdoldive and certain studio-based situations.
The underlying question that runs through this stigation is: what can be inferred from a
single frame of short-time analysis data that sffam intuitive spectral model of sound which
can be realised in real-time and has good conyinwihere it exists in the input sound, across

frames without the need for overlapping (cross-Bdegments?

The work presented in previous chapters goes soayetavanswering this question and the
key outcomes have been summarised and discusdbd and of each chapter. This final

chapter draws together these answers and the nestiaus that they inevitably pose. The
hypothesis is restated along with the methods eyegito test it. The results and conclusions
of each of the last three chapters are summariseédliacussed and finally, future directions
in which the work presented may be extended arsidered.

7.2 Hypothesis

Wavelet and Fourier analysis methods can be cordbiog@rovide a meaningful and
flexible parametric spectral modelling system tbah be used as a real-time audio
processor for monophonic sources. In particular high-accuracy modelling of their
parameters (including those of non-stationarityljusoids can be identified and
tracked from frame to frame and that complex wasetan be used to produce a
model of the residual which is time-variant and da@ synthesized in the time
domain.

There have been three core questions to answiee ires$ting of this hypothesis:

1. Does there exist in a single frame of Fourier asialylata useful information for
establishing which components are due to underlgtadple sinusoids, how they
evolve during the frame and, therefore, how thepneot across the boundary

between the previous and next frames?
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2. Can a wavelet system be employed for the modetifrgpectral components of audio

signals, particularly those not well described Iy behaviour of stable sinusoids?

3. Can a spectral modelling system exist which usdsnigues developed in answer to
the first two questions which can, firstly, operate a frame-by-frame basis and,
secondly, execute quickly enough to process daterfahan it is acquired and,

therefore, operate in real-time?

Chapter 4 examined how reassigned Fourier anatistis could be used to provide high
accuracy estimates of a sinusoid’'s mean frequenog amplitude and how their
instantaneous values change over time. It alscstigaged how the interrelated behaviour of
these parameters could indicate whether the conmpdoeeng analysed was a genuine stable

sinusoid. Three different methods for evaluatingisoidality were compared.

Chapter 5 described a method employing B-splineelets, since they closely approximate
modulated windows with constant instantaneous faqy, for the analysis of audio signals.
This system attempts to model components in terfmthe control data for time-variant
parametric equalisers, namely centre frequencyn gaid bandwidth. To allow user-
controlled mediation between ‘over-completenessl e@@mputational cost the analysis offers

differing degrees of decimation.

Chapter 6 put the techniques and discoveries optheious two chapters into a practical
context by describing a frame-by-frame spectral ellody system. This system takes an
input audio signal, produces a spectral model ahd resythesizes the input audio by using
the model data to control time-variant sinusoidatiltators and equalisers which are
commonly encountered and understood tools for teation and manipulation of audio
signals. The quality of the system was investigabsd testing with simple synthetic
components and ‘real-world’ acoustic sounds ang@rbfiling the time taken for key parts of

the system to execute.
7.3 Summary of resultsand conclusions

7.3.1 Sinusoidal analysis

The work undertaken into non-stationary sinusoiadelling and described in chapter 4

yielded the following discoveries:
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Phase distortion analysis can be adapted for ude reassignment data in order to
obtain estimates for intra-frame frequency and #@oge# change of individual

sinusoidal components.

Improved modelling of the distortion data can yie&bstimates which vary
significantly less with frequency, particularly fextreme amplitude and frequency

change.

The influence of amplitude change on the estimatibfrequency change, and vice
versa, can be reduced by an iterative approacheto ¢stimation using simple 2D

array look-up and interpolation.

The variance of the reassignment data to a leastreg polynomial fit can be used to

indicate the sinusoidal ‘behaviour’ of the estinsabbtained.

As suggested in other work [Hainsworth and Macle&t@)3b], but not investigated,
an alternative sinusoidality measure can be derilogdcomparing phase and

magnitude reassignment data.

The two tests of sinusoidality developed offer canaple performance to an existing
correlation method for non-stationary sinusoidsteémms of discrimination and far

superior performance in terms of computational.cost

The discrimination capability of all of the corretan methods tested diminishes with
increasing non-stationarity and the presence obenoOf the two reassignment
measures proposed the variance difference methéalpes best for closely clustered
sinusoids but the time reassignment difference oktberforms better where the

signal contains a high level of noise.

Wavelet modelling of audio signals

The work presented in chapter 5 to develop a neamé based, wavelet analysis system

demonstrated that:

Complex B-spline wavelets can accurately deterrthieefrequency and magnitude of
sinusoidal components provided the input frame ieperly initialised in the
frequency domain with a sinc function.
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7.3.3

That control over the amount of decimation perfatméthin the transform offers
mediation between shift invariance of magnitudenesges and the ranges within
which aliasing of frequencies can occur at eaclesca

That knowledge of the frequency of a componentlmamused to correct magnitude

estimates so that a single synthesis equalisebearsed for reconstruction.

An additional ‘frequency splitting’ stage in theadysis offers a simple measure of the
bandwidth of an underlying component. Estimatelsasfdwidth for isolated sinusoids

and impulses are very precise.

Estimates of magnitude and frequency are adveedtdgted by the window applied
in preparation for prior Fourier analysis. The fregcy estimates can be corrected by
combining two polynomial functions that take théstence from centre of frame’ and
‘deviation of original estimate from centre frequgrof wavelet’, however this is a
costly process in a real-time context. ‘Un-windogvitthe signal prior to wavelet
analysis is not possible due to the amplificatibardifacts introduced by the Hilbert
transform although windowing effects can be redubgdincreasing the analysis
overlap, therefore reducing the length of the sgsith frame and constraining the

analysis to a small region around the centre ofripat frame.

For short-time wavelet analysis the behaviour efwavelet filters deviates from that
predicted by the modulated Gaussian model as thgport extends beyond the
length of the analysis frame. The effects upon ritade can be reduced by empirical

methods and, again, by increasing the overlap.

Frame-by-frame spectral modelling

The frame-by-frame spectral modelling system dbedriin chapter 6 has the following

capabilities:

The ability to produce non-stationary sinusoids alhcan be tracked across frame
boundaries with minimal discontinuities for manpdg of signals and have piecewise

quadratic phase and piecewise exponential amplitude

Where overlapping analysis frames are employed,latency between input and
output is less than the analysis frame length &orda hop size of one sample, is half
the length of a single analysis frame.
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* The system can analyse, model and synthesize wiatermines to be the sinusoidal
part of the input signal within real-time using @ntly available general purpose
computer hardware.

* The residual part of the signal can be analysedjetterd and resynthesized in the
time domain using parametric equalisers appliethéooutput of a broadband noise

source just within (95% of, for the worst caseregke) real-time .

* The residual part of the system is able to repredagpulses with excellent time
resolution using a single frame of analysis dataah also adapt well, in terms of
time and frequency resolution, to impulses or widglaced sinusoids.

» Unlike other heterogeneous systems it generatesf & output in the time domain

on a sample-by-sample basis.
The system currently has the following limitations:

« Where a sinusoid is misclassified as a noise coeagorduring a track the
discontinuity is often audible. This can be a paitar problem for signals where the

distinction between noise and sinusoids is notrigl@gemarcated.

* The residual analysis and resynthesis system duenadel stationary noise well and
for certain types of sound, such as speech, tererisiderable dissimilarity between
residual components in their original and resyn#eesforms. This also leads to poor

perceptual fusion of different component types.

« The combined sinusoidal and residual analysis, tfindeand resynthesis takes
longer than real-time to execute on the test sysi#hough the execution time for
signals tested, which range from a single sinugoicdroadband noise, does not

exceed more than twice the duration of the inpyradi

7.4 Consideration of hypothesis

This thesis has demonstrated that a frame-by-frapeetral modelling system that can
produce an intuitive description and high qualggynthesis of certain types of input sound
can be realised. The system, despite much of figoienplemented in a high level language,
can produce output within a time period which issel to the duration of the input signal.
The quality of the sinusoidal model, which produsegjle, non-stationary, frame segments
with only phase matching, and no interpolationpasrframe boundaries is enhanced by the

high accuracy parameter estimates achieved useglgjorithms described in chapter 4. The
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description of sinusoids in the presence of, aed geparation from, noise is not perfect and
inaccuracies still exist in the estimation of exiee combined frequency and amplitude

change.

The equalised noise model proposed is successfueftain types of signal, adapting well to
time and frequency domain impulses and adding \eelifiess’ to the flute and violin
examples which would be missing, or costly to prjun a sinusoid only model. However
the sinusoidal and residual parts of the synthegsiot well fused for some signals with the
residual model functioning poorly for some compdeeand the sinusoidal only model
performs better in these cases. As discussed ppteh3, the wavelet analysis system and its
application to time domain residual modelling apdtkesis is entirely novel and, whilst it
demonstrates potential in this area, requires éuntbfinement before it will be suited to the

wide range of sounds that a general spectral modedl/stem should expect to encounter.

On the evidence presented in this thesis therensiderable existing capability for real-time
spectral modelling of many types of audio signat&l anany worthwhile avenues for
exploration in order to extend the range of sigtladd can be successfully modelled by such

a system and the quality of synthesis from suclodem

7.5 Further work

As well as discussion of results and the presemtatf conclusions, each of the last three
chapters has suggested ways in which the work ibesicwithin them could be taken further.

These are summarised in this section along withtiaddl thoughts on how knowledge in

each area might be improved.

Chapter 4 showed that increasing the order of dhgnpmial fitted to the reassignment data
from first to second results in less variation afpiitude and frequency change estimates
with distance of the component from the centre h& peak analysis bin. This begs the
obvious question: can this variation be furtherucsal by the use of even higher order
polynomials? However, whilst this may give bettstireates it may also reduce the variance
from the fit for all component types reducing th®lity to discriminate between noise and

sinusoids. Combing the time reassignment differeacd variance methods may be the
solution to obtaining more accurate estimates Wwhataining the discrimination capability.

As suggested at the end of chapter 4, with so magthods beginning to appear for non-
stationary parameter estimation and with avail@bleputational power continuing to grow,
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the long term future of frame based identificateord description of sinusoids may lie in a

meta-analysis of the output of all or many of théi$erent techniques.

As discussed in chapter 5 the new work on biquadraiplementations of higher order
digital parametric equalisers in [Orfanidis, 2008l offer coverage of the audio spectrum
that can be more accurately controlled than thahefoverlapping equalisers employed in
the reSynthsystem. In fact these higher order filters couttl @& ‘equivalent rectangular
bands’ to those of the analysis filters. Also notexs the need for a greater understanding of
the relationship between the centre frequencigh®fsplit filters and the bandwidth of the
underlying component that they are influenced beséntly the magnitude correction does
not consider the width of the underlying compon#&vithin the band constraints of the filters
this does not affect the correction to a signiftcdegree and the magnitude correction will
always improve rather than degrade the estimateeier this correction could possibly be
improved. The difficulty here is that the integrdla Gaussian function is not analytically
defined and so table look-up or another approaakldveeed to be found.

Chapter 6 highlighted the need for a greater utaleding of how sound production in
acoustic instruments affects the behaviour of theseids produced. This would inform the
choice of sinusoidality thresholds for such instemts preventing partial tracks from
switching on and off during steady-state portiohsaund. Hysteresis in the partial tracking
was also suggested to prevent such breaks occudisg, more accurate wavelet modelling,
as outlined in the previous paragraph would aid abeustic plausibility, and fusion with

deterministic elements, of resynthesized components

It is hoped that these will act as starting pomdsjust for this author but for others working,
or interested, in this area of sound modelling adsformation. The wide range of methods
and applications covered will benefit most from @evrange of expertise and viewpoints.
Recalling, and adapting, a quotation from the frbkapter: “No one knows more than

everyone”.
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APPENDIX A: CODE LISTING DATA CD

This appendix provides files containing text of tuele for the system described in chapter 6
and used to generate the CD of audio examples (&p®) for this thesis. There is a single
MATLAB ‘m’ file (resynth.m) and a number of C filefkom which MATLAB MEX
functions have been compiled. The code is presenmteal CD-ROM which accompanies this
thesis to enable it to be viewed within a compubi@sed development environment or a text
editor if such an environment is not available.sTEBD-ROM can be found inside the back
cover of the thesis. It is recommended that the MAB Editor/Debugger is used view the
‘m’ file and a C editing environment, such as thadvided in MicrosofVisual Studids used

to view the C files. However, if no such softwaseavailable, this code can be viewed in a

basic text editor or word processing application.

Wherever MEX files are used there is also an edgimtasub function within reSynth.m.
Where these alternative functions exist they amceuted by the comments ‘MATLAB
version of function’ and ‘C version of function’.oBh have identical functionality and only

one is required to perform the required task.

In addition to these files there are four MATLABtadiles (.mat) which contain the 2D

arrays used forAA and Af estimation, determining the expected variance amdecting

mean amplitude estimates.

The list of files on the CD-ROM is as follows:

Resynth.m: main MATLAB program that implements the entirestgm.
CConv.c: MEX file to perform linear convolution.

CDestimate.c: MEX file to produceAA, Af and o° estimates from RDA measures.

CEQ.c: MEX file to perform parametric equalisation.
CFindPeaks.c: MEX file to search for local maxima in magnitusfgectrum.

CPhaseUnwrap.c. MEX file that converts real and imaginary parfscomplex wavelet

output to phase and unwraps these values.
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CSineGenerateCP.c. MEX file that synthesizes a single sinusoid gieewalue for the phase

at the centre of the synthesis frame.

CSineGenerateSP.c. MEX file that synthesizes a single sinusoid giwewmalue for the phase

at the start of the synthesis frame.
CSpectralSubtract.c: MEX file that performs spectral subtraction afissoidal signal.

CTimeOffsetFit.c. MEX file that fits a second degree polynomial ttme reassignment

offset data around a magnitude peak to produce RiBAsures.
daTable0 96 100.mat: data file containing the 2D array f&A estimation.
dfTable0 260 100.mat: data file containing the 2D array féf estimation.
chiSquaredTable0_96 260.mat: data file containing the 2D array of expectedarze.

ampTable0_96 260.mat: data file containing 2D array of expected vareanc
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APPENDIX B: AUDIO EXAMPLESCD

This appendix is in the form of an audio CD contagnsound examples of theSynth
spectral modelling system described in chapter @haf thesis. Many of the examples
included here are discussed in the chapter. A fisithg with brief notes on each example is

given below.

1. Slow vibrato. There are three items on this track: (i) inpu), f@synthesized output
with a frame length of 1025 samples, an overla@ ahd a VDT of 0.006, and (iii)
output (with the same analysis settings) but whih pitch of the output shifted down
by a semitone. This example is discussed in seétibi.2.

2. Fast vibrato. There are four items on this track: (i) input, @)itput with a frame
length of 1025 samples, an overlap of 2 and a VDD.006, (iii) resynthesized
output as for the previous item but with a framegté of 513 and (iv) resynthesized
output with a frame length of 513 samples and a MT0.06. This example is

discussed in section 6.7.1.2.

3. Impulse. There are three items on this track: (i) inpu), guitput with a frame length
of 1025 samples, an overlap of 2 and a VDT of 0.G0®l (iii) output as for the
previous item but pitch shifted up by an octavepuises are discussed in section
6.7.2.1

4. Residual sinusoid. There are two items on this track. The sinusoidat pf the
system and the spectral subtraction have beenlédisand the residual is modelling
an input 1 kHz sinusoid. (i) is the output of tlesidual part of the system and (ii) is
the output with the pitch shifted up by a perfaéthf Residual analysis of mis-
classified sinusoids is discussed in section 7.1.

5. Flute. There are five items on this track: (i) input, {i@synthesized output with a
frame length of 1025 samples, an overlap of 2 aMiD& of 0.006, (iii)) sinusoidal
part of resynthesized output with the same settiigy residual part of the output
with the same settings, and (v) combined outputhpshifted up by an octave. The

performance of the system for this instrument $saésed in section 6.7.3.1.

6. Violin. There are four audio items on this track: (i)upp(ii) output with a frame

length of 1025 samples, an overlap of 2 and a VD0.006, (iii) output with the
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same settings except the VDT is set to 0.06 and(tput with the same settings but
with the VDT increased to 0.6. These items areusised in section 6.7.3.2.

. Male singing. There are three items on this track: (i) inpud, ¢utput with a frame
length of 1025 samples, an overlap of 2 and a VD0.@06 and (iii) output with the
same settings apart from the VDT which has beesedato 0.06. These items are
discussed in section 6.7.3.3.

. Male speaking. There are three items on this track: (i) inpu},qutput with a frame
length of 1025 samples, an overlap of 2 and a VDU.@06 and (iii) output with the
same settings but with the VDT increased to 0.06es€ items are discussed in
section 6.7.3.3.
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LIST OF ABBREVIATIONS

Most of these abbreviations are in common use hewsume refer specifically to thesis,

where this is the case it is denoted in brackets).

DFT: Discrete Fourier transform (sometimes referredsttha discrete-time Fourier series).
DWT: Discrete wavelet transform (decimated or undecidjate

DLL: Dynamically linked library.

FFT: Fast Fourier transform.

FWT: Fast wavelet transform (decimated, also known ataMavavelet transform).

FRD: Frequency reassignment difference (introducedigttiesis).

HUT: Helsinki University of Technology

MATLAB: Matrix laboratory (scientific computing softwareopuced by Mathworks Inc.)
MEX: MATLAB executable file (MATLAB function written irC or FORTRAN).

PDA: Phase distortion analysis.

PM: Used in this thesis to refer to physical modeliimgeneral.

RDA: Reassignment distortion analysis (introduced is thesis).

SM: Used in this thesis to refer to spectral modelimgeneral.

SMS: Spectral Modelling Synthesis (specific SM systewiskxl by Xavier Serra).

SPL: Sound pressure level (dB SPL is referencedGaPa).

STFT: Short-time Fourier transform

TRD: Time reassignment difference (introduced in thesis).

VDT: Variance difference threshold (introduced in thissis).

VST: Steinberg’s Virtual Studio Technology, an audio gassing and synthesis plug-in

format
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