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ABSTRACT 

Methods for adapting the output of a two dimensional Kirchoff-variable digital waveguide mesh to better match that 
of a 3D mesh, both of which are intended to model the same acoustic space, are presented. Details of the methods, 
including quality of output and computational demands, are given along with details of how they are incorporated 
into the hybrid system within which they are employed. 

 

1. INTRODUCTION 

The simulation of the acoustics of real and imagined 
environments using digital techniques has been an 
active area of audio research for almost half a century. 
Earlier digital reverberators typically employed 
networks of one dimensional finite impulse response 
(FIR) and infinite impulse response (IIR) filters [1]. 
However, in recent years approaches which explicitly 
consider the geometry and materials of the space being 
simulated have received greater attention as they 
become more computationally tractable and the 
numerical methods required to implement them have 
been improved and better understood. 

There are two main approaches to modeling an acoustic 
space in two or three dimensions: ray-tracing and wave-
based methods. The former models the propagation of 
sound in a space as straight line ‘rays’ of sound that 
emanate from the sounding object and are reflected, 
diffused and attenuated by objects with which they 
collide. This geometric approach is relatively cheap 
computationally and is effective at mid and high 
frequencies where the size of objects that the sound rays 
interact with are large compared to the wavelength of 
the sound that the rays represent. However, at low 
frequencies sound wave propagation is not well 
modeled by rays. The second approach models the 
sound directly as variations in pressure and/or velocity 
which propagate in two or three dimensions. Although 
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this approach is computationally intensive, actual wave 
propagation effects such as diffraction are inherent in 
the model. These effects are important at low 
frequencies where the size of objects within in the room, 
and in many cases the room itself, are comparable to the 
wavelength of the sound being modeled. Since rays are 
straight lines of infinitesimal width, effects such as 
diffraction are not inherent since the rays are not able to 
‘bend around’ objects. 

RenderAIR is a room acoustics modeling tool which 
uses a combination of geometric (ray-based) and wave-
based simulations of sound propagation in enclosed 
spaces [2]. This affords the user very fine control over 
the trade-off between model accuracy and 
computational efficiency while combining the most 
desirable aspects of both wave and ray based modeling. 
It is a cross-platform system with applications in sound 
design for music and film as well as architectural 
design. It offers an integrated development environment 
within which acoustic spaces can be designed from 
scratch or imported using common interchange formats 
for 3D applications (such as Collaborative Design 
Activity – COLLADA). Once a desired virtual space 
has been designed or imported and source and 
receiver(s) have been positioned, an impulse response is 
rendered off-line which can then be used via a real-time 
or off-line convolution algorithm. Work parallel to this 
has focussed on developing sources and receivers with 
first- or second-order directional characteristics from 
their omnidirectional counterparts [3], [4]. 

The hybrid approach of RenderAIR requires the 
combination of outputs from three different types of 
model: two dimensional (2D) and three dimensional 
(3D) wave-based and 3D ray-traced. Typically a band 
and time limited 3D output is used to provide the best 
possible model of the low frequency, early time 
behaviour of a space in response to an impulse. In both 
the natural and computational domains, 2D and 3D 
reverberators do not behave in exactly the same way, 
particularly with regard to reverberation time and, to a 
lesser extent, magnitude response. Before the outputs 
from 2D and 3D models are combined the 2D impulse 
response is modified in order to ensure that it better 
matches the 3D model and the response of the actual 
space being simulated. 

The rest of this paper presents details of the algorithm 
used to modify the 2D response before combination 
with the 3D wave-based and ray-traced outputs. In the 

next section an overview of the digital waveguide mesh 
(DWM) and finite-difference time domain (FDTD) 
methods for the modeling of wave propagation is given. 
In Section 3 the underlying acoustic theory pertaining to 
this work is summarised. Section 4 gives details of the 
2D-3D correction algorithm. Section 5 provides a  
comparison of the outputs from 3D, 2D and ‘3D-
adapted 2D’ meshes for spaces of varying size and 
shape, diffusive and absorptive properties.  

2. WAVE-BASED MODELING WITH THE 
DIGITAL WAVEGUIDE MESH 

For wave-based simulation in both two dimensions (2D) 
and three dimensions (3D) RenderAIR uses the digital 
waveguide mesh (DWM). This is a multi-dimensional 
arrangement of nodes and unit delays. In what is known 
as a K-variable (K-) DWM, the nodes (which sum and 
weight pressures arriving from adjacent nodes) and unit 
delays (which connect the nodes and represent the 
propagation time/distance between them) are arranged 
to form a mesh which represents the physical space 
being modeled [5]. The K-DWM is an example of a 
finite difference time domain technique (FDTD) for 
solving the 2D and 3D wave equation. The distance (in 
the virtual space) between the nodes is determined by 
the sampling rate of the mesh – a high sampling rate 
requires a dense mesh and so a large virtual space 
requires a large number of nodes and hence a large 
number of nodal updates per sample. Also, in practice 
there is a dispersion error associated with the DWM due 
to a direction dependent variation in wave propagation 
speed due to the topology of the mesh [6]. This error 
increases with frequency and requires either over-
sampling of the mesh or frequency warping of the 
output.  Therefore, for an accurate full bandwidth 
rendering of the impulse response of a particular space 
in three dimensions there is a computational expense 
(both in terms of memory to store the mesh and the 
speed to update it) which is prohibitive in most 
situations. It is for this reason that RenderAIR offers the 
possibility of a hybrid impulse response, allowing the 
user to trade computation time with model accuracy. 

2.1.1.  2D versus 3D wave-based modeling 

Natural reverberation typically occurs within 3D 
resonators although, historically, some use has been 
made of plates which are essentially 2D resonators. 
Modeling of acoustic spaces with a 2D model is many 
times faster in computational terms than 3D modeling. 
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For example, considering a 1 meter cubic room in 3D 
the number of nodes required at a sample rate of 44.1 
kHz is given by: 

N W L H= × ×  (1 )  

where W, L and H are the numbers of nodes in the 
width, length and height direction. The number of nodes 
in a given direction is related to the inter-nodal spacing 
which is determined by the type of mesh being used. 
For example, the number of nodes needed to span the 
width of a mesh of the type used in RenderAIR is given 
by: 

round 1sF w
W

c D

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (2 ) 

where w is the width of the room in meters, c is the 
speed of sound in air (assumed to be 344 m/s in this 
paper), D is the number of dimensions (three in this 
case) and sF  is the sample rate (sometimes referred to 
as the ‘update frequency’) [5]. In this example the 
number of nodes required in 3D is 421,875. For a 2D 
model the number of nodes is given by: 

N W L= ×  (3 ) 

where the number of nodes in each dimension is 
calculated using (2) with D=2. For this example the 
number of nodes required in 2D is 8,464 if the 2D plane 
is parallel to the floor/ceiling (or either pair of facing 
walls) or 16,641 if, at the other extreme, the 2D plane is 
at an angle of 45 degrees to one of the surfaces. When 
translating from a 2D to a 3D model there is an inherent 
ambiguity in the way in which the 2D plane intersects 
the 3D space that it is approximating. In RenderAIR this 
is resolved by having the plane intersect both the source 
and receiver position. There is still rotational ambiguity 
but this is usually resolved by having the plane flat (i.e. 
so that if the source were a human listener it would 
intersect both ears). 

The relationship between sF and the effective upper 
frequency of the mesh is determined by the type of 
mesh employed. RenderAIR uses a K-mesh rectilinear 
(also known as ‘standard leap-frog’) scheme where, at 
each time-step, an air node (i.e. one that is not next to a 
boundary on any of its sides) is updated according to the 
following equation for 2D: 
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and the following for 3D: 
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where p is pressure, l, h and w are now integer indices in 
each spatial direction and n is the current sample 
number. In both equations λ is the Courant number that 
relates the distance between samples in space and time 
and the speed of wave propagation: 

cT

X
λ =  (6 ) 

where T is the time sampling interval and X is the 

spatial sampling interval [6]. By choosing 1 2λ = for 

2D and 1 3λ = for 3D equations (5) and (6) simplify 

and meshes can be updated using an alternating sub-
gridded scheme where only half of the nodes need to be 
updated at each time-step provided the signal with 
which the mesh is excited is itself sub-gridded (i.e. 
every other sample is zero) a condition which is a met 
for a unit impulse [6]. Such a scheme offers significant 
saving both in terms of computational cost and the 
memory required to accommodate the mesh. The 
disadvantage of such sub-gridded schemes is that their 
effective upper frequencies are often lower than other 
types of mesh update scheme, so there is a tradeoff 
between bandwidth and computational cost to be 
considered. Comparisons with other schemes have 
indicated that the sub-gridded rectilinear scheme 
adopted by RenderAIR performs well in terms of model 
accuracy and efficiency, when over-sampled to 
compensate for the reduced effective upper frequency. 

3. REVERBERATION TIME IN 2D AND 3D  

The prediction of the reverberation time of a room from 
its geometry, contents and the materials from which it is 
constructed is a problem that was famously first tackled 
in earnest by Wallace Sabine, over a century ago [7]. 
Sabine derived a formula relating room volume (V), 
surface area (S) and average absorption coefficient (α) 
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to reverberation time from a series of measurements 
which showed good agreement with that observed for 
rooms with low overall absorption. Subsequent work in 
this area focussed on finding an analytic, rather than 
empirical, solution to reverberation prediction. This 
work attempted to determine the mean free path that a 
sound wave would travel between reflections and the 
amount of absorption that would occur at each 
reflection. From this the time taken for the sound energy 
associated with a single wave, or all of the waves 
propagating in a room, to fall to a certain level could be 
predicted. Such an approach is the basis of the Norris-
Eyring formula, of which the Sabine formula of thirty 
years earlier is a very good approximation where the 
average absorption of the room is not greater than α = 
0.5: 

( )6

60,3

4 ln 10

ln(1 )D

V
RT

cS α

−−
=

−
 (7 ) 

where RT60,3D is the time taken for the sound energy to 
fall to one millionth of its initial value (-60 dB) and α is 
the absorption coefficient of the room averaged over all 
surfaces and all frequencies [8]. The mean free path is 
given by 4V S and, in some derivations of this quantity 
(e.g. that presented in [9]), is independent of room 
shape. However it is important to note that it is assumed 
that the room is perfectly diffuse, with no specular 
reflections from surfaces, and the absorption of all 
surfaces is the same (i.e. =α ). Applying the same 
approach to the 2D case, the reverberation time of a 
plane is given by: 

( )6

60,2

ln 10

ln(1 )D

S
RT

cC

π
α

−−
=

−
 (8 ) 

where the upper-case C is the total length of all edges 
(i.e. the circumference of the plane and any objects 
within it) [9]. Absorbers typically exhibit frequency-
dependent characteristics and the formulae given (7) 
and (8) can incorporate this by becoming measures at a 
specific frequency of the reverberation time given the 
average absorption at the same frequency. A 
generalization of these formulae to rooms with non-
uniform absorption is given by the Millington-Sette 
equation: 

( ) ( )
( )( )

6
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4 ln 10

ln 1
D I

i i
i

V
RT f

c S fα

−−
=
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 (9 )  
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( )( )
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i
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π

α

−−
=

−∑

 (10 ) 

where I is the number of different absorber types and i 
is the index of the absorber with regard to either its 
surface area or circumference and its frequency 
dependent absorption. 

4. 2D AND 3D REVERBERATION MATCHING 

As already stated, it is often the case that a full 
bandwidth output from a 3D DWM is not 
computationally tractable either in terms of the memory 
physically available or the time which can reasonably 
allocated to the task (obtaining the output from a large 
3D mesh with a high sampling frequency can take 
days). To this end the 3D DWM is combined with the 
output of a 3D ray-tracing algorithm and a 2D DWM. 
Typically the ray-trace and 3D DWM are combined to 
produce the initial (early reflections) part of the 
response, and the ray-trace and the 2D DWM are 
combined to produce the rest of the response (the 
reverberation). 

Whilst the 3D DWM and the ray-trace are both based on 
the same virtual space, the 2D DWM is a virtual plane 
which is an approximation to that space and its output 
impulse response, specifically its RT60, is likely to 
differ. This section describes a simple correction 
algorithm which is applied to the output of the 2D mesh 
to correct the RT60 so that it is the same as that of the 3D 
mesh. 

A fundamental design goal in the development of 
RenderAIR is the fidelity of its output to that which is 
produced by the actual space that is being modeled (or, 
if the space does not currently physically exist, what 
would what be produced if it did). A useful by-product 
of this is that the virtual spaces it produces match their 
real counterparts in terms of their behaviour well, 
meaning that analytical methods applied to real 2D 
planes and 3D spaces, as outlined in the previous 
section, can be applied to these virtual spaces. 
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The purpose of the 2D/3D matching algorithm 
described here is to adjust the RT60 of the 2D output so 
that it matches that of the 3D and ray-traced output. 
Since the 2D output is only used to synthesize the latter 
part of the reverberation temporal alignment of the 
sparse, but temporally distinct, early reflections is not 
required. Beyond the ‘early time transition’ the 
reflections should be sufficiently dense in time that 
adjustment of the overall decay time is all that is 
required for temporal matching. Since the outputs of the 
all parts of the system are due to linear time-invariant 
processes this matching algorithm can be performed 
post DWM rendering which is much cheaper than 
attempting to incorporate it into the 2D model. 

Since RenderAIR allows the absorption and diffusion 
characteristics of all materials used in the virtual room 
to be defined at octave intervals from 125 Hz to 8 kHz 
the correction algorithm also divides the spectrum of 2D 
output so that the RT60 can be corrected in each of these 
frequency bands. This is achieved by the use of a 
lengthily tapped linear phase orthogonal octave filter 
bank (353 taps for Fs = 44.1 kHz) where there is a low 
and a high pass filter in addition to band-pass filters 
centered at 125, 250,...8 kHz. The target magnitude 
response of the filters is zero gain at the octave above 
and below the centre frequency (although, of course, 
this cannot be achieved practically with a finite number 
of taps). The correction of the RT60 in each filtered band 
is achieved by applying a time-varying gain/attenuation 
to the output of each filter, before the outputs are 
summed to produce the full bandwidth 3D-corrected 2D 
output. 

The gain is applied according to a linear function 
determined by the difference between the attenuation 
per sample exhibited in both the 2D and 3D impulse 
responses: 

60,2 60,3

60 1 1

D Ds
G

F RT RT

⎛ ⎞
Δ = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (11 ) 

where GΔ is the change, in dB per sample, applied to 
the filter gain. In RenderAIR this time varying filter gain 
for RT60 correction is combined with that applied to 
simulate air absorption, which is also a frequency 
dependent effect. Where GΔ is positive care must be 
taken to ensure that this does not cause an apparent 
instability in the system (i.e. net growth in the output).  

5. RESULTS FOR SIMPLE MODELED 
SPACES 

To demonstrate how the matching algorithm works in 
practice, results for some simple, but contrasting virtual 
spaces, are presented. For each of these spaces the 2D 
and 3D output along with the 3D-compensated 2D 
output DWM are compared. For ease of comparison 
both types of output have been rendered at Fs = 44.1 
kHz. For the 3D scheme used here this gives an 
effective upper frequency of 16 kHz, for 2D it is 22.05 
kHz. The meshes are excited with a unit impulse and the 
output is then processed to correct for the frequency 
response of the mesh, as outlined in [10], and to remove 
the reflected spectrum above the effective upper 
frequency. This is equivalent to exciting the mesh with 
an identically conditioned input signal. Where the 
surfaces of the spaces/edges of the planes have diffusive 
properties these are uniformly distributed throughout. 
The implementation of boundary conditions is based on 
work presented in [11]. For each 3D room the source 
and receiver are placed in diametrically opposite 
corners, which gives maximum spacing between them 
and ensures that all room modes are captured. For the 
equivalent 2D model the source and receiver are on the 
same plane which is parallel with the floor.  

5.1. Cubic room, 4.7 x 4.7 x 4.7 m, non-
frequency-dependent absorption  

Rooms having all three dimensions the same length are 
the simplest geometrically, but are amongst the most 
problematic acoustically since they are modally 
degenerate. For this comparison the normal-incidence 
reflectance (R0) of all of the surfaces is 0.9. The 
absorption coefficient is calculated from the reflectance 
at 45 degrees: 
 

2
451 Rα = −  (12 ) 

where: 

1

145

cos (45) 1

cos (45) 1

D

D
w

w

R
ξ
ξ

−

−

−
=

+
 (13 ) 

and D is the number of dimensions (for example, in 3D 
there is an incident azimuth and elevation angle) and the 
specific wall impedance is given by: 
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0

0

1

1w
R

R
ξ +

=
−

 (14 ) 

This gives an estimated α of 0.26 in 2D and 0.34 in 3D. 

The dimensions of the 2D plane are 4.7m x 6.7m. Using 
(7) the RT60,3D is estimated as 0.30s and, using (8) the 
RT60,2D is 0.58. This gives GΔ  = -0.0022 dB/sample. 
Figure 1 shows the normalised energy decay for the 3D, 
2D and corrected 2D impulse responses. 

 

Figure 1: Energy plots of 3D (top), 2D (middle) and 
corrected 2D impulse responses for cubic room. 

It can be seen that the slope of the energy decay for the 
corrected 2D response matches that of the 3D decay 
much better than the uncorrected 2D. The RT60 of each 
of these responses, extrapolated from measurements of 
the decay between -5 and -35 dB (ref. the initial 
energy), are: 0.34s (3D), 0.56 (2D) and 0.3 (corrected 
2D). The corrected RT60,2D is a significant improvement, 
but the match is not perfect as (7) has under-estimated 
the RT60,3D and (8) has over-estimated RT60,2D. One 
possible way of ameliorating the effect of mis-
estimation of the RT60,2D would be to measure this from 
the actual 2D response, however this would break the 
equivalence between the two measures used to scale this 
response, and would need to be tested across a wide 
range of spaces in order to ensure that it actually 
improves the match between the 2D and 3D outputs in 
general. 

5.2. Room with prime dimensions 

A room with similar volume to the cubic room but with 
prime dimensions of 211 x 331 x 449 inter-node 
spacings, which corresponds to 2.9m x 4.5m x 6.1m, is 
tested next. Rooms with prime dimensions are desirable 
in acoustic terms since they will not have coincident 
modes (where a mode due to one path has the same 
centre frequency as a mode, or modes, due to another 

path). Again, R0 = 0.9 for all surfaces giving α = 0.26 in 
2D and 0.34 in 3D.  

From (7) the RT60,3D is predicted to be 0.26s. For a 3D 
space with non-equal dimensions there is ambiguity in 
how to position the 2D plane as described in section 
2.1.1. Whilst this ambiguity can be resolved by deciding 
which surface represents the floor of the space, it is 
instructive here to consider all three cases. This gives 
three 2D planes, each of which might be used to 
represent the 3D space. Their dimensions are 6.7m x 
4.5m, 7.5m x 2.8m (the discrepancy between the 2.9m 
dimension for the 3D case is due to the fact that 
distances must be rounded to correspond to the nearest 
whole number of nodal spacings) and 6.1m x 5.4m. The 
RT60,2D for each of these planes are 0.57s, 0.44s and 
0.60s respectively. From these estimates GΔ = -0.0029, 
-0.0022 and -0.0030. The measured RT60,2D  are 0.54s, 
0.42s and 0.57s. The corrected RT60,2D  are 0.29, 0.26 
and 0.26 showing good correspondence with the 
measured RT60,3D and, although there is some deviation 
in the first case, in all cases the temporal match between 
all impulse responses has been improved. 

5.3. Cubic room, 4.9 x 4.9 x 4.9m with highly 
diffusive surfaces 

There are two approaches to producing diffusive 
boundaries in DWMs. The first uses a W-mesh 
diffusing layer which interfaces with an interior K-
mesh. A W-mesh has bi-directional delay lines allowing 
impedance mismatches at nodes to be explicitly 
modeled in the update equation [5]. The diffusing layer 
achieves diffusion by measuring the angle of incidence 
of the sound energy approaching a boundary (since a bi-
directional delay line can have a direction associated 
with the propagation of pressure) and controlling the 
specularity of the reflection by adding a random offset 
to the angle of reflection. For a perfectly specular 
reflection no noise is added, for a perfectly diffuse 
reflection the angle of reflection is chosen entirely 
randomly, with no weighting given to the angle of 
incidence in the reflection decision. Control of the 
relative weighting of the angle of incidence and the 
random term allows control of the diffusive properties 
of the surface. The alternative approach models the 
physical cause of diffusion which is the variation in the 
position of boundary surface, rather than the effect itself 
by incorporating a delay into the wall impedance filter 
of the boundary  [11],[12]. This is the approach adopted 
here since it does not require a W-mesh layer between 
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the inner and boundary nodes. The reflectance, and 
therefore absorption, are the same as for previous 
examples. 

The measured and predicted RT60,3D are 0.40s and 0.31s 
and it is interesting to note that there is less agreement 
between these two values than in the non-diffuse case, 
whereas the theory of reverberation time prediction 
suggests that the two should be closer where the actual 
space is more diffuse. The situation is the same in 2D 
where the measured and predicted RT60,2D are 0.69s and 
0.59s respectively. However, both the 2D and 3D 
estimation are affected in the same way; they are both 
under-estimated to a greater extent than in the non-
diffuse case. The measured RT60,2D of the corrected 
response is 0.30, an improvement on the un-corrected 
case, but not as good as that for the non-diffuse cubic 
room. 

5.4. Room with frequency dependent porous 
absorption 

Acoustically porous materials absorb sound by damping 
the movement of air particles. This damping only occurs 
where the particles have velocity and so they have the 
greatest effect when they are placed a quarter-
wavelength from a boundary. A method of predicting 
the frequency dependent reflectance of a porous 
absorber from its porous layer thickness and flow 
resistivity is given in [13] and adopted here to determine 
the octave band reflectance. These octave band 
reflectance points are then used to derive a 23rd order 
recursive-filter with the best least squares fit to the 
frequency response, from which the wall-impedance for 
the frequency dependent boundaries of the boundary is 
derived, as described in [11]. The frequency-dependent 
reflectance, and that of the digital filter used to model it, 
is shown in Figure 2, and can be seen that there is a very 
close match between the two. 

Figure 3 shows the actual RT60,3D and RT60,2D in each of 
the octave bands. As can be seen there is a significant 
discrepancy between the values for the 3D case and the 
three possible sets of values for the 2D case (values for 
each of the possible planes are presented). Figure 4 
compares the same RT60,3D with the RT60,2D of the time-
corrected 2D responses. It can be seen that, although 
there are still some significant discrepancies, for 
individual responses at certain frequency points, the 
temporal alignment process has produced a better match 
overall between RT60,3D and RT60,2D . 

 

Figure 2: Magnitude of frequency-dependent reflectance 
for a porous absorber (solid line) and magnitude 
response of equivalent 23rd order recursive digital filter 
(dotted line). 

 

Figure 3: Measured RT60,3D  (thick line) and RT60,2D  
(thin lines) for a DWM with porous absorber. 

 

Figure 4: Measured RT60,3D  (thick line) and corrected 
RT60,2D  (thin lines) for a DWM with porous absorber. 

5.5. Cubic room with pillar 

The final example considered is the diffuse room 
described in Section 5.3 but with a pillar which runs 
from floor to ceiling and whose cross-sectional area is 
1.83 m2. The effect of this pillar is to increase surface 
area but decrease volume in the 3D case, and to increase 
the total boundary length but decrease the area in the 2D 
case. In both cases this has the effect of reducing the 
RT60. The predicted and measured RT60,3D are 0.24s and 
0.36 and the same RT60,2D values are 0.40 and 0.55. 
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Again, there are significant discrepancies between 
prediction and measurement, but those discrepancies are 
similar in both the 2D and 3D cases. The RT60,2D of the 
corrected 2D response is 0.27 which is closer to the 
RT60,3D than the un-corrected version, but is not as 
closely aligned compared to previous examples. Figure 
5 shows the 3D, 2D and 3D-corrected 2D impulse 
responses and here an improvement in the corrected 
version can be clearly seen. 

 

Figure 5: Energy plots of 3D (top), 2D (middle) and 
corrected 2D impulse responses for cubic diffuse room 
with pillar. 

6. CONCLUSIONS 

This paper has described, with reference to relevant 
theory, a method for matching the reverberation time of 
the outputs from 2D and 3D models of the same 
acoustic space for use in a hybrid room modelling 
system. A number of examples of simple rooms have 
been given and, in each case, the technique has 
produced an improvement in the correspondence 
between RT60,2D and RT60,3D. Typical rooms that 
RenderAIR is designed to model are   much more 
complex than this in terms of their geometry and the 
distribution of absorption and diffusion across surfaces 
and in terms of their spectrum. The simple rooms 
presented here are, due to their shape, highly modal and 
frequency-dependency has only been considered in one 
example. Readers who are interested in how different 
aspects of the RenderAIR system combine to produce 
accurate simulations of real-world spaces can find more 
information in [2]. A more detailed analysis of how this 
temporal alignment algorithm performs on real-world 
spaces will be the subject of future work. 
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