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ABSTRACT 

A system for dividing time-coincident stereo audio signals into directional segments is presented. The purpose is to 
give greater flexibility in the presentation of spatial information when two-channel audio is reproduced. For 
example, different inter-channel time shifts could be introduced for segments depending on their direction. A novel 
aspect of this work is the use of complex wavelet packet analysis, along with ‘best basis’ selection, in an attempt to 
identify time-frequency atoms which belong to only one segment. The system is described, with reference to the 
relevant underlying theory and the quality of its output for the best bases from complex wavelet packets is compared 
with methods based on more established analysis and processing methods. 

 

1. INTRODUCTION 

For the individual listener, the ideal presentation of the 
spatial information contained within a two-channel 
stereo audio recording will depend to a certain extent on 
their own preferences and their own environment and 
reproduction equipment. As trends in spatial 
presentation vary over time so there may be a desire to 
revise the spatial presentation in existing two-channel 
recordings. Examples such as these of the desirability of 
flexibility in two-channel audio presentation motivate 
the work described in this paper. The purpose of the 

system described is to divide the auditory scene 
presented by time-coincident (level-panned) audio into 
directional ‘segments’. Having more segments than 
audio channels offers flexibility in how each segment is 
presented at the loudspeakers and this is the over-
arching aim of this research. As such, this work exists 
between individual source separation, such as that 
described in [1], and spatial processing (for example [2-
4]). The purpose is not necessarily to provide every 
single instrument separately for re-mixing, but to 
provide (distinct or overlapping) zones within a two-
channel audio scene. 

 



Wells Directional Segmentation of Stereo Audio
 

AES 130th Convention, London, UK, 2011 May 13–16 

Page 2 of 10 

For a narrow segment, or for a single point-like source 
within a larger segment, the audio contained within it 
will have very high inter-channel correlation (as it is 
time coincident) and the ratio of the channel energies 
will correspond with the spatial position of the centre of 
that segment (or the point source within it). To produce 
more segments than audio channels a time-frequency or 
time-scale analysis (or a combination of the two) is 
performed on the audio. This analysis is only perfectly 
successful when each time-frequency/scale atom 
belongs to one, and only one, segment. Where sources 
in different segments are overlapping in time and 
frequency (as is the case in rhythmic and tonal music 
which uses harmonic sounds and/or broad-band 
percussion) then such disjointedness in a fixed time-
frequency representation is unlikely to occur. In most 
situations, the optimal time-frequency/scale 
representation will be one which adapts to the audio 
scene. 

An adaptive method is investigated for directional 
segmentation in this paper and compared with other 
analysis methods used previously for similar 
applications. Signal analysis is performed using the 
Dual-Tree Complex Wavelet Transform [5, 10]. This 
transform is used to obtain a packet decomposition from 
which a best basis is chosen which is deemed to 
represent the best adaptation to the signal under 
analysis. Complex packet analysis offers the possibility 
of using the phase difference between channels for each 
packet (atom) and this paper explores whether such 
information can improve the basis selection for the task 
of directional segmentation.  

In the next section of this paper the nature and purpose 
of directional segmentation of two channel audio is 
discussed. Section 3 briefly surveys the different time-
frequency\scale analysis methods which are then 
compared in later sections. In section 4 the experimental 
design is explained and section 5 presents results for 
three different two-channel amplitude panned mixtures. 
The final section summarises the paper and presents 
conclusions based on the results. 

2. DIRECTIONAL SEGMENTATION OF TWO-
CHANNEL AUDIO  

Stereo amplitude panning and\or coincident microphone 
techniques encode spatial information as level 
differences between the left and right channels. Whilst 
these level differences do translate into time-of-arrival 
(TOA) differences at the ears of the listener when 

replayed over loudspeakers (due to path length 
differences between each ear and each speaker), spatial 
information is not encoded as time differences between 
the channels for purely amplitude-panned\coincident 
recordings. An alternative approach to representing 
space is to actually introduce a time shift between 
channels. This is can be achieved with microphones in a 
spaced configuration or by using inter-channel delays 
for individual sources. A more detailed discussion and 
comparison of these techniques can be found in [6].  

The question of which approach to capturing and 
encoding spatial information is not closed. It is 
sufficient here to say that, given the wide range of 
recording situations and personal tastes for spatial 
presentation, some flexibility in the representation of 
space within two-channel recordings is desirable. 
However, offering such flexibility is far from trivial 
where the number of source positions exceeds the 
number of channels (i.e. is greater than two, in this 
case). To translate level into timing differences requires 
a separated signal for each point in the transverse plane, 
since each will require a different inter-channel gain and 
delay to be applied. The presence of early reflections 
and reverberation further complicates the problem. 
Although the reproduced signal will ultimately arrive at 
an array of only two sensors (the ears of the listener) the 
introduction of inter-channel delays may require the 
exposure of individual sounds which have previously 
been only been heard as a component in a temporally 
coincident mixture. Where the number of source 
positions exceeds the number of channels at any point in 
the time-frequency plane then individual signals for 
each source cannot be exactly determined. An atomic 
decomposition of a signal describes it as the energy (and 
possibly phase) coefficients of a set of atoms: translated 
and modulated (time-frequency) or translated and scaled 
(time-scale) functions or sets of functions, or a 
combination of the two. If a division of the time-
frequency\scale plane can be achieved where no more 
than one source direction contributes to any one atom 
then perfect directional separation can be achieved, even 
where there are more source positions than channels. 
Different combinations of different types of sources will 
overlap in different regions of time-frequency\scale and 
therefore adapting the set of functions to match the 
signal will offer some choice in how atoms map to 
source directions.  

An example of the segmentation of two-channel audio is 
described in [4]. The main purpose of the segmentation 
in that work is to generate signals for reproduction over 
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a larger number of speakers than there are signal 
channels, a process known as up-mixing, although other 
applications such as ‘re-panning’ are also described. 
Processes for extraction of ambience and directional 
segmentation are detailed. The segmentation begins 
with the derivation of a ‘panogram’ from the two-
channel audio which is used to determine the likely 
positions of sources. A narrow Gaussian window is 
centered on each of the estimated source positions. This 
window is used to apply a direction dependent gain 
function to the coefficients of the time-frequency 
representation, which in this case is the short-time 
Fourier transform (STFT). From this modified 
windowed set of coefficients audio representing the 
directional source is synthesized. For up-mixing this 
process is preceded by ambience extraction which 
searches for atoms with low inter-channel coherence 
and synthesizes an estimate of the ambience from this. 
This synthesized ambience is then decorrelated from the 
ambience remaining in the front channels and delayed 
before being delivered via the surround loudspeakers.  

3. SEGMENTATION WITH COMPLEX 
ADAPTIVE TRANSFORMS 

The work presented here investigates alternative atomic 
decompositions to the STFT used in [4]. Since the 
output of the STFT is complex the phase can be used to 
indicate whether more than one component is 
contributing to an atom in the decomposition. For 
purely level difference stereo there will be no inter-
channel phase difference for an atom containing energy 
from only one source direction. However, where there 
are significant contributions to a single atom from more 
than one direction the phase difference will not be 
constant. Despite this information being available, the 
size of STFT atoms is fixed once the window size has 
been chosen: there is no multiple, packet-like 
decomposition from which a best energy-preserving 
basis can be chosen.  

The wavelet packet decomposition (WPD) is a 
generalisation of the discrete wavelet transform (DWT). 
The DWT yields a fixed, dyadic (hence time-scale) 
division of the time-frequency plane. An overview of 
the successive ‘low\high pass filtering followed by 
decimation’ operations with which the DWT is 
calculated are shown in Figure 1.  The dyadic division 
of the time-frequency plane of the DWT is just one of 
many different divisions of the plane offered by the 
WPD. Figure 2 gives an overview of the filtering and 
decimation operations which provide the full tree of the 

WPD from which a particular basis, offering a particular 
division of the time-frequency plane, can be chosen. 
Because of the tree structure of the decomposition fast 
algorithms exist for searching for the best representation 
(the ‘best basis’) for a particular signal [7, 8].  

 

Figure 1: Filtering and decimation operations for a 3 
scale DWT. A downward arrow represents a low-pass 
filter followed by decimation by a factor of 2. An 
upward arrow represents a high-pass filter followed by 
decimation by a factor of 2. The signal is successively 
decomposed into detail (D) and approximation (A) 
coefficients at each scale. Those sets of coefficients 
marked in bold form the dyadic basis of the DWT.  

The Dual-Tree Complex Wavelet Transform (DT-
CWT) of Kingsbury is an extension of the DWT 
whereby a signal is decomposed by two sets of basis 
functions for which each corresponding pair of 
functions are approximately Hilbert transforms of each 
other. As a result of this approach the DT-CWT is 100% 
redundant and approximately shift invariant. Since the 
DT-CWT consists of two orthogonal decompositions of 
the same signal, a straightforward approach to deriving 
a wavelet packet decomposition is to treat the two 
‘trees’ as completely independent with their own sets of 
filters (as is the case for the DT-CWT). However 
‘analyticity’ (the extent to which each of the function 
pairs are Hilbert transforms of each other) is better 
preserved by an altered scheme where some of the 
filtering stages of both trees use the same filters [12]. 
This is the approach used in the experiments for this 
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paper and is referred to as the Dual-Tree Complex 
Wavelet Packet Decomposition (DT-CWPD). 

 

Figure 2: Filtering and decimation operations for a 3 
scale WPD. For this decomposition there are 23 possible 
bases. 

Local cosine bases given by the Cosine Packet 
Transform (CPD) are also amenable to fast searching 
for a best basis [9]. These bases are constructed from 
windowed cosines of the form (using the notation given 
in [1]): 

2 1
[ ] [ ] cos
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pd

d d
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π− −
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        (1) 

where 

1
2

2
d

pdc Np−= −                 (2) 

and N is the length of the input signal (and must be a 
positive integer power of 2), p is the position of a 
function, d is the decomposition depth and D is the 
maximum depth. The length of a basis function at depth 
d is N2-d and so this basis divides the time axis into 
partitions belonging to N2-d [1,2,.., ]d D∈ . Thus the 

CPD divides the time-frequency plane into time 
partitions (whose frequency resolution are determined 
by choice of partition length), whereas the WPD divides 
the time-frequency plane into frequency partitions 
(whose length are determined by the choice of 
bandwidth) [9]. 

4. COMPARISON OF DECOMPOSITION 
METHODS FOR DIRECTIONAL 
SEGMENTATION 

The purpose of the experiment described in this paper is 
to investigate the directional segmentation properties of 
the three decomposition methods described in the 
previous section. In order to make a comparison 
between these different methods they are all tested in 
the same segmentation framework and on the same two-
channel anechoic signal mixtures.  

For the purposes of this test the source positions for 
each mixture are the same and are known a priori . 
Whilst a priori knowledge of source positions is 
unlikely to be available in real-world applications it is 
the ability of the decomposition methods for 
segmentation which is specifically being tested here. In 
practice, a posteriori knowledge of source positions 
could be gained from global statistics for the mixture, 
such as the ‘panogram’ described in [4]. Each mixture 
contains four sources (src1-4 and each of these are 
panned to the left and right outputs (outL, outR) of the 
mixture via: 

1

2L

3R

4

src

srcout .8341, .5995, .4005, .1659

srcout .1659, .4005, .5995, .8341]

src

 
 

    =      
  
 

    (3) 

This mixing matrix gives the same ratio between left 
and right energy that would occur for four sources 
spaced equidistantly in an arc within the front quadrant 
of a coincident pair of dipole microphones at 90 degrees 
to each other: sources positioned at –33.75 degrees (-
3π/16 radians), -11.25 (-π/16), 11.25 (π/16) and 33.75 
(3π/16) from the centre of the front quadrant. 

The process described here is designed to divide the 
audio scene into K+1 segments, where K is the number 
of segments in the front quadrant and the additional 
segment contains any residual energy not assigned to 
the others. The segments are orthogonal to each so that, 
where no processing is applied individually to segments 
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prior to recombination, the output is identical to input. 
This is different to the approach taken in [1], for 
example, where non-orthogonal segmentations of the 
soundfield are taken, and different orthogonal bases are 
used for each source, in order to achieve the best quality 
for individual sources heard separately. The algorithm 
proceeds as follows: 

1. One of the time-frequency decompositions under test 
is performed on each channel of the mixture separately. 

2. For each left-right atom pair in the decomposition the 
direction is estimated via: 

( ) R L
R L

R L

sgn arccot
a a

a a
a a

θ
 +

= −  
 − 

                 (4) 

where a is the atomic energy.  

3. Where a packet decomposition has been performed 
the best basis is searched using the Shannon entropy as 
the cost function: 

( )( ) ( )( )L R 2 L R( ) log ( )
P

p

H a p a p a p a p= − + +∑   (5) 

where H is the entropy for a particular basis of P atoms. 
The DT-CWPD is also tested using a cost function 
which is weighted by the phase difference between 
atoms within a pair. Here the phase-weighted entropy 
for a basis is given by: 

( )( ) ( )( )
( ) ( )

L R 2 L R

R L

( ) log ( )P

p

a p a p a p a p
H

p pφ φ
+ +

= −
−∑  (6) 

For the STFT the basis is fixed and cannot adapt to the 
signal. 

4. Once the basis has been determined then the atoms 
for that basis are segmented into K two-channel 
segments. For each segment centered at a particular 
source angle, segmentation is performed by a Hann 
window centered at that source position: 

( )( )L
L,

1 cos 2 ,
2

0,  otherwise                                        

k k
k

a K
a K

πθ θ + − Θ − Θ <= 


    (7) 

( )( )R
R,

1 cos 2 ,
2

0,  otherwise                                        

k k
k

a K
a K

πθ θ + − Θ − Θ <= 


    (8) 

where k is the source index and kΘ is the position of 

that source (known a priori). These directional 
windowing functions are shown in Figure 3 for K = 4 
(the situation tested in this experiment). Clearly, where 
sources are not equally spaced, a modified windowing 
function would be required to ensure segments are 
source-centered and preserve energy when combined, 
possibly using Hann-like tapering at the ends of 
constant functions. 

5. The left and right channels for each separated source 
are then resynthesized.  

6. The windowing functions in equations (7-8) and 
shown in Figure 3 only fully cover the front quadrant. 
Where the source separation has not been entirely 
successful then there will be energy outside of these 
regions which is the ‘residual after separation’. This 
residual can be obtained by subtracting the sum of the 
separated sources from the input signal. The lower the 
energy level in the residual, the more successful the 
capture of sources within directional segments has been. 

 

Figure 3: Directional windows applied to atoms for 
source 1 (solid line), source 2 (dashed), source 3 
(dotted) and source 4 (dot dashed). 

5. RESULTS 

5.1. Decompositions 

The segmentation algorithm described in the previous 
section has been tested with the following time-
frequency decompositions: 
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5.1.1. DT-CWT  

This is performed using the filters and algorithms 
provided in the toolbox for the DT-CWPD [13]. Two 
sets of filters are provided based around the Daubechies 
wavelets with 6 and 14 vanishing moments respectively 
(db6 and db14) [9]. The algorithm is tested with both of 
these filters (DT-CDWT short, using db6, and DT-
CDWT, using db14). The decomposition is performed 
up to and including scale 11. Figure 4 shows the real 
and imaginary wavelets for DT-CDWT short at scale 
11. No best basis search is possible with the DT-DWT 
although its basis functions are included in the DT-
DWPD. 

 

Figure 3: Real (solid line) and imaginary (dotted) 
wavelets for DT-CDWT short at scale 11. 

5.1.2. DT-CWPD 

Again, this is performed using both sets of filters 
provided in [13] and the decomposition is performed up 
to and including scale 11, dividing the frequency axis 
into 2048 partitions for wavelet packets at this scale. 
Following this decomposition a best basis search is 
performed. As described in the previous section, this 
decomposition method is tested with both a standard 
and a phase-weighted entropy measure (equations 5 and 
6). Where the latter entropy measure has been used this 
is indicated by the symbol φ.  

5.1.3. CPD 

This is implemented with the WaveLab toolbox for 
Matlab [14]. The maximum decomposition level D is 
chosen such that the shortest packet length is 512 
samples. A best basis search is performed, but since the 
output of the CPD is not complex only the standard 
entropy measure (equation 5) is used. 

5.1.4. STFT 

This is tested with 50% overlapped Hann windowed 
frames of length 512, 1024, 2048, 4096 and 8192 
samples. No best basis search is possible with the STFT. 

5.2. Mixtures 

All of the decomposition methods described in the 
previous sub-sections have been tested on three short 
audio mixtures ranging between 2 and 6 seconds 
duration, each combined according to equation (3). 

5.2.1. Pitched instruments 

The individual sources for this mixture are clarinet, 
violin, soprano singer and viola performing an excerpt 
from a Mozart opera. The sources were obtained from 
[15]. 

5.2.2. Speech babble 

This is a combination of four speakers talking 
simultaneously. The mixture comprises two male adults, 
one female adult and one male child. The sources were 
obtained from [16]. 

5.2.3. Percussion 

This mixture consists of three hand percussion 
instruments and a single note with swept pitch from a 
Shakuhachi-like instrument. The sources were obtained 
from [18]. 

5.3. Data 

The quality of the segmentations is objectively 
measured by three quantities for each separated source: 
the energy weighted inter-channel correlation, the signal 
to residual energy ratio (SRR) and the azimuth error.  

For perfect segmentation of an anechoic mixture each 
individual segment should represent a single point 
source. For sources which are amplitude-panned there 
should be no phase difference between left and right 
channels – the signals should be identical apart from 
amplitude scaling. In this situation the zero-lag cross-
correlation X between channels will be 1.0, where X is 
given by: 
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X
⋅= L R

L R

src' src'
src' src'

                 (8) 

and src'L and src'R are vectors containing the samples 
of the left and right channels of the segmented source. 
The higher the correlation value, the better the 
segmentation process has isolated components arriving 
from a single direction. For each decomposition method 
the mean of this correlation for each source (weighted 
according to the energy in the separated signals) is 
given in the next sub-section. 

There will be no energy in the residual signal where 
there has been perfect separation, since the value of one 
of the Hann windows is 1 (and the value of the others is 
0) at each of the source positions. Where there is 
residual energy this is an indication that atoms in the 
basis are contributed to by more than one source, giving 
rise to a spurious source direction outside of the front 
quadrant. The higher the SRR ratio the better the 
segmentation process is at placing energy for sources 
within the front quadrant. 

Finally the ratio of left to right energy is an indicator of 
how much energy in a separated segment is due to the 
correct source. From this ratio the azimuth of the 
separated source can be found, using equation (4). The 
absolute azimuth error can then be found since the 
actual source azimuth is known. The energy-weighted 
mean azimuth error is presented for each method in the 
next sub-section. 

Tables 1-3 present results for each of the three sound 
mixtures: the pitched instrument mix, speech mix and 
percussion mix. For each mixture the energy weighted 
correlation and the signal to residual ratio is presented 
for each of the decomposition methods. For each of the 
three mixtures the distribution of functions for the best 
basis across each scale is shown in Figures 4-6 for the 
standard and phase-weighted entropy. Either the DT-
CWPD or short DT-CWPD is shown depending on 
which of these is the most successful at segmenting a 
particular mixture. Whilst the horizontal axes of these 
plots do show the relative bandwidths of the basis 
functions they are ‘natural’ (or Paley), rather than 
frequency, ordered and so there is not a sequential 
mapping between their position on the horizontal axes 
and their centre frequency (See the discussion of 
frequency\sequency and natural\Paley ordering in [7]). 
Audio examples of the segmentations are provided 
online, along with Matlab code for producing them [17]. 

 

 

Decomposition 
method Corr. SRR(dB) 

Azimuth 
error 

DT-CDWT 0.9161 19.3620 3.7838 
DT-CDWT short 0.9159 19.3680 3.7838 
DT-CWPD 0.9666 24.9131 1.2617 
DT-CWPD φ 0.9665 25.1797 1.2588 
DT-CWPD short 0.9648 24.7197 1.3293 
DT-CWPD short φ 0.9641 25.0425 1.3419 
CPD 0.9880 21.1404 0.7867 
STFT 512 0.9425 19.0438 2.1394 
STFT 1024 0.9588 22.0967 1.5092 
STFT 2048 0.9679 24.7309 1.1700 
STFT 4096 0.9713 25.7743 1.0835 
STFT 8192 0.9684 26.3274 1.0863 

Table 1: Segmentation results for the pitched instrument 
mixture. 

 

Decomposition 
method Corr. SRR(dB)  

Azimuth 
error 

DT-CDWT 0.9065 18.8201 2.7823 
DT-CDWT short 0.9066 18.8303 2.7800 
DT-CWPD 0.9327 20.1290 1.7641 
DT-CWPD φ 0.9317 20.2468 1.7859 
DT-CWPD short 0.9339 20.4221 1.6639 
DT-CWPD short φ 0.9353 20.0872 1.6341 
CPD 0.9788 17.5386 0.8371 
STFT 512 0.9117 18.6367 2.4099 
STFT 1024 0.9303 19.9590 1.6564 
STFT 2048 0.9463 21.2447 1.2576 
STFT 4096 0.9464 20.7891 1.3281 
STFT 8192 0.9334 19.9363 1.7269 

Table 2: Segmentation results for the speech babble 
mixture. 
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Decomposition 
method Corr. SRR(dB)  

Azimuth 
error 

DT-CDWT 0.8885 17.3829 2.1194 
DT-CDWT short 0.8885 17.3833 2.1194 
DT-CWPD  0.9547 23.2966 0.9156 
DT-CWPD φ 0.9483 19.0078 1.2382 
DT-CWPD short 0.9495 22.6258 0.9769 
DT-CWPD short φ 0.9491 22.6843 0.9872 
CPD 0.9808 19.4562 0.5311 
STFT 512 0.9381 21.4797 1.0892 
STFT 1024 0.9527 23.0793 0.8577 
STFT 2048 0.9593 24.7444 0.7792 
STFT 4096 0.9594 24.6397 0.8216 
STFT 8192 0.9584 23.7691 0.9116 

Table 3: Segmentation results for the percussion 
mixture. 

 

 

Figure 4: Function distribution for standard (top) and 
phase-weighted (bottom) best basis of the DT-CWPD 
for the instrument mixture 

 

 

Figure 5: Function distribution for standard (top) and 
phase-weighted (bottom) best basis of the short DT-
CWPD for the speech mixture. 

 

 

Figure 6: Function distribution for standard (top) and 
phase-weighted (bottom) best basis of the DT-CWPD 
for the percussion mixture. 

5.4. Discussion 

For all three mixtures the DT-CWT performs the worst 
of all the decompositions in all three performance 
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measures. This indicates that the fixed, dyadic basis of 
this transform is not well suited to separating the 
different sources in the audio mixtures. The results for 
this transform are almost identical for the db6 and db14 
filters. This decomposition method is clearly not suited 
to this task. 

For all of the mixtures the best basis of the CPD 
produces the lowest azimuth error and highest inter-
channel correlation. This demonstrates that this method 
is best able to produce segmentations containing energy 
which is centered closest to the original source positions 
and with the best localisation (i.e. the narrowest energy 
distribution). However the best basis of the CPD 
performs relatively badly in terms of SRR, indicating 
that its azimuth accuracy and localisation comes at a 
cost of mis-placing a significant amount of the mixture 
energy outside of the front quadrant. In terms of SRR 
the STFT performs best for all mixtures. However it is 
not the same frame length STFT for all mixtures. The 
8192 frame length STFT performs best for the 
instrument mixture and the 2048 performs best for the 
other two. 

The DT-CWPD consistently out-performs the CPD in 
terms of SRR, but is always inferior to the CPD, and 
one or more the STFTs, in terms of azimuth error and 
correlation. Overall the DT-CPWD employing the db14 
filters fares best. Although, as can be seen from Figures 
4-6 the entropy measure used does have some effect on 
the chosen basis, the phase-weighted measure does not 
perform better than the standard measure and, for these 
example mixtures, this use of the phase information 
available is not of benefit. As perhaps would be 
expected the frequency localisation of the basis 
decreases (and therefore, due to time-frequency duality, 
the time resolution increases) from the pitched 
instrument mixture (slowly changing, harmonic 
components) through the speech mixture (faster 
changing, largely harmonic components) to the 
percussion mixture (many transient components). 

Listening to the segmentations of the instrument 
mixture the 8192 length STFT seems to keep each 
instrument the most ‘intact’ but at a cost of slightly 
more interference from other directions within each 
segment than for the CPD. Whilst the CT-WPD 
performs reasonably well in both regards, each segment 
is accompanied by a ‘wheezing’ sound, apparently from 
amplitude modulated upper harmonics from other 
directions. The performance of the DT-CWT is audibly 
much worse than any of the other decompositions. For 

the speech mixture none of the decomposition methods 
are able to perform as well as for the instrument mixture 
and this can be heard clearly in the audio examples. In 
terms of audible quality each method introduces clearly 
audible degradations but each with a different character. 
The 2048 length STFT performs better in terms of 
audible interference from other directions but there is an 
annoying clicking sound, due to the Hann window 
shape not being preserved upon resynthesis and 
discontinuities therefore appearing in the audio. 
Listening to the outputs for the percussion mixture the 
CT-WPD and 2048 length STFT both produce relatively 
good segmentations. The CPD performance varies 
during the excerpt. For example, percussive onsets are 
better preserved at the start of the excerpt than at the 
end, illustrating the effect of the shift variance of this 
decomposition method – as the note onset positions 
move relative to the position of the time axis partitions 
so there is significant variation in the smearing of the 
onset. 

6. CONCLUSIONS 

This paper has described an approach to directional 
segmentation of audio and it has been tested on three 
different sound mixtures using different time-
frequency\scale decompositions. Some of these 
decomposition methods are highly redundant and allow 
for a best basis, which is adapted to the mixture to be 
separated, to be determined. Most of the decomposition 
methods (STFT and dual tree wavelet based) are 
complex (quasi complex in the wavelet case) and 100% 
redundant. These complex methods also exhibit shift 
invariance (this is approximate in the wavelet case). The 
overall segmentation algorithm is designed to allow for 
perfect reconstruction of segmented signals where no 
additional processing, such as the introduction of inter-
channel delays for time-shift panning, is performed. 

For all mixtures the critically sampled CPD best basis 
performed best in terms of azimuth error and inter-
channel correlation for segments but it has a higher SRR 
than all of the other methods, apart from the DT-CWT 
which performs poorly in all respects. The 8192 STFT 
performs best in terms of SRR for the instrument 
mixture but worse than the DT-CWPD best basis for the 
speech babble. The DT-CWPD is out-performed by the 
CPD best basis and at least one of the STFT 
decompositions for each mixture in terms of correlation 
and azimuth error, but always performs better than the 
CPD in terms of SRR. The effect of shift variance on 
the CPD can be clearly heard in segments from the 
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percussion mixture. The results do not demonstrate the 
benefit of using the inter-channel phase difference to 
inform the basis selection. 

Further work is needed to provide a clearer picture of 
which method is most widely suited to the directional 
segmentation process. The complex wavelet 
decompositions considered have only used two different 
filter sets and these are of the Daubechies type, 
originally designed for signal compaction and may well 
not be suited to this kind of audio processing. Future 
experiments will examine other filter sets for complex 
wavelets and investigate a complex version of cosine 
packets to determine whether the residual energy can be 
reduced for this decomposition type, whilst retaining the 
good energy localisation for the segments. More 
complicated scenes with more sources, which are non-
uniformly spaced, also with early reflections and 
reverberation due to room geometry, must also be 
considered. 
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